The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalin...The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1e6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%.展开更多
为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IG...为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。展开更多
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
This wok proposed the extraction distillation coupled pervaporation(ED+PV) technology process using two different solvents to separate isopropanol(IPA) and diisopropyl ether(DIPE) from DIPE/IPA/H_(2)O ternary heteroge...This wok proposed the extraction distillation coupled pervaporation(ED+PV) technology process using two different solvents to separate isopropanol(IPA) and diisopropyl ether(DIPE) from DIPE/IPA/H_(2)O ternary heterogeneous azeotropes in industrial wastewater from the synthesis of isopropanol in this study.Based on strict design specifications, simulation and sequential iteration methods are used for process design and optimization. Compared to the ethylene glycol(EG)-EG+H_(2)O process and the 1,3-propanediol(PDO)-IPA+H_(2)O process, the total annual cost(TAC) of the EG-IPA+H_(2)O process decreased by 20.76% and 7.86%(PDO). Compared to the EG-EG+H_(2)O process, the TAC of the PDO-IPA+H_(2)O process reduced 14%, but the global warming potential(GWP) and human toxicity of the PDO-IPA+H_(2)O process increased 11.3% and 4.07% respectively. Compared to the PDO-IPA+H_(2)O process, the EG-IPA+H_(2)O process saves 7.86%(TAC), 9.78%(GWP) and 9.85%(human toxicity). The ED+PV process with EG is superior to PDO in factors of TAC, energy consumption, human toxicity and environment. The EG-IPA+H_(2)O process changed the separation order of the products of the multi-azeotropic system, reduced the cost and energy conservation of the system, and enhanced the environmental protection evaluation of the process, is the best process through life cycle assessment for analyzing the economy, energy conservation, environmental assessment and human toxicity, designing cleaner products, controlling waste discharge, and promoting the chemical purification industry. This work provides a new process design and optimized separation ideas, will have a good guiding significance for the research and application separation of multi-azeotropic mixture with mixed solvents in organic wastewater from the cleaner chemical production, has been up to standard wastewater discharge process, and realized the development goal of carbon peak and carbon neutrality in the sustainable development of chemical clean industry.展开更多
Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone...Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on pe...展开更多
The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite m...The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite membranes have high application value in industrial wastewater treatment. By varying the membrane fabrication parameters including the weight percent(wt%) of the PMDA, the crosslink temperature and duration, membrane with the best desalination performance was obtained. The composite membrane with a 2-lm-thick PVA selective layer containing 20 wt% of PMDA and being crosslinked at 100 °C for 2 h showed the highest Na Cl rejection of 99.98% with a water flux of 32.26 L/(m^2 h)at 70 °C using the 35,000 ppm Na Cl aqueous solution as feed. FTIR spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron microscope have been used to characterize the structures and properties of both the crosslinked PVA dense films and PVA/PAN composite membranes. The effects of the concentrations of PMDA,the crosslinking time and temperature to the membrane water contact angle, swelling degree, salt rejection and water flux were systematically studied.展开更多
Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation d...Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation desalination has been a difficult task.Here,a novel hybrid membrane with doped graphene oxide quantum dots(GOQDs)which is rich in hydrophilic groups and small size into the matrix of PVA was prepared to improve the membrane flux.The membranes structures were described by field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),Fourier transform infrared(FT-IR),differential scanning calorimetry(DSC),thermogravimetric analysis(TGA)and X-ray diffraction(XRD).And more,Water contact angle,swelling degree,and pervaporation properties were carried out to explore the effect of GOQDs in PVA matrix.In addition,GOQDs content in the hybrid membrane,NaCl concentration,and feed temperature were investigated accordingly.Moreover,the hydrogen bonds between PVA chains were weakened by the interaction between GOQDs and PVA chains.Significantly,the hybrid membrane with optimized doped GOQDs content,200 mg·L^(-1),displays a high membrane flux of 17.09 kg·m^(-2)·h^(-1)and the salt rejection is consistently greater than 99.6%.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
A large amount of waste liquids containing methanol/acetone/water mixtures are produced in the synthesis of methyl methacrylate(MMA).Under the advocacy of green chemical industry,it is urgent to develop an efficient,e...A large amount of waste liquids containing methanol/acetone/water mixtures are produced in the synthesis of methyl methacrylate(MMA).Under the advocacy of green chemical industry,it is urgent to develop an efficient,economic and energy-saving mixture separation process.Through thermodynamic azeotropic behavior and pressure sensitivity analysis,pressure-swing distillation was determined and the optimal separation pressure of each column in the process was obtained.Due to the composition of waste liquids produced were quite different in MMA production,the pressure-swing distillation separation process was designed to fully achieve the accurate waste liquids treatment.Taking the total annual cost(TAC)as the target,the sequential iteration method was used to optimize the process,and the impact of composition on economy was compared.In order to further realize the energy-saving of the separation process,the pervaporation membrane module was introduced to pretreat the waste liquid in the pressure-swing distillation.The results showed that the TAC of the coupling process was 46% higher than that of the pressure-swing distillation process,and the thermodynamic efficiency was 30% higher.This study provides waste liquid treatment technology for enterprises and analyzes its economic and energy efficiency,which has reference significance for the development of coupled separation technology.展开更多
A facile surface segregation method was utilized to fabricate poly(vinyl alcohol)-polyethersulfone (PVA-PES) composite membranes. PVA and PES were first dissolved in dimethyl sulfoxide (DMSO), then casted on a g...A facile surface segregation method was utilized to fabricate poly(vinyl alcohol)-polyethersulfone (PVA-PES) composite membranes. PVA and PES were first dissolved in dimethyl sulfoxide (DMSO), then casted on a glass plate and immersed in a coagulation bath. During the phase inversion process in coagulation bath, PVA spontaneously segregated to the polymer solution/coagulation bath interface. The enriched PVA on the surface was further crosslinked by glutaraldehyde. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS) confirmed the integral and asymmetric membrane structure with a dense PVA-enriched surface and a porous PES-enriched support, as well as the surface enrichment of PVA. The coverage fraction of the membrane surtace by PVA reacned up to 86.8% when me PVA content m me membrane recipe was 16.7% (by mass). The water contact angle decreased with the increase of PVA content. The effect of coagulation bath type on membrane structure was analyzed. The membrane pervaporation performance was evaluated by varying the PVA content, the annealing temperature, feed concentration and operation temperature. The membrane exhibited a fairly good ethanol dehydration capacity and long-term operational stability.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simpl...In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simple solvent evaporation method using four ILs,viz.,1-n-butyl-3-methylimidazolium chloride(BMIMCl),1-hexyl-3-methylimidazolium chloride(HMIMCl),1-hexyl-3-methylimidazolium tetra fluoroborate(HMIMBF4) and 1-octyl-3-methylimidazolium chloride(OMIMCl).Three ILs were used to study the effect of alkyl chain on the pervaporation performance.The study had focused on the effect feed water concentration from 10%–40%and effect of feed temperature from 50–80°C.Physiochemical properties of all the membranes were studied using Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and contact angle measurement.The Arrhenius activation energies for permeation were estimated to be in the range 4–12 kJ·mol-1 from the temperature dependent permeation values.展开更多
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金supported by the National Natural Science Foundation of China(21868012 and 22368025)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20202BAB203011).
文摘The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1e6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%.
文摘为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
基金supported by the National Natural Science Foundation of China (21776145 and 21808117)。
文摘This wok proposed the extraction distillation coupled pervaporation(ED+PV) technology process using two different solvents to separate isopropanol(IPA) and diisopropyl ether(DIPE) from DIPE/IPA/H_(2)O ternary heterogeneous azeotropes in industrial wastewater from the synthesis of isopropanol in this study.Based on strict design specifications, simulation and sequential iteration methods are used for process design and optimization. Compared to the ethylene glycol(EG)-EG+H_(2)O process and the 1,3-propanediol(PDO)-IPA+H_(2)O process, the total annual cost(TAC) of the EG-IPA+H_(2)O process decreased by 20.76% and 7.86%(PDO). Compared to the EG-EG+H_(2)O process, the TAC of the PDO-IPA+H_(2)O process reduced 14%, but the global warming potential(GWP) and human toxicity of the PDO-IPA+H_(2)O process increased 11.3% and 4.07% respectively. Compared to the PDO-IPA+H_(2)O process, the EG-IPA+H_(2)O process saves 7.86%(TAC), 9.78%(GWP) and 9.85%(human toxicity). The ED+PV process with EG is superior to PDO in factors of TAC, energy consumption, human toxicity and environment. The EG-IPA+H_(2)O process changed the separation order of the products of the multi-azeotropic system, reduced the cost and energy conservation of the system, and enhanced the environmental protection evaluation of the process, is the best process through life cycle assessment for analyzing the economy, energy conservation, environmental assessment and human toxicity, designing cleaner products, controlling waste discharge, and promoting the chemical purification industry. This work provides a new process design and optimized separation ideas, will have a good guiding significance for the research and application separation of multi-azeotropic mixture with mixed solvents in organic wastewater from the cleaner chemical production, has been up to standard wastewater discharge process, and realized the development goal of carbon peak and carbon neutrality in the sustainable development of chemical clean industry.
基金supported by the Major State Basic Research Program of China(No.2009CB623404)National Natural Science Foundation of China(Nos.20736003,20676067)+3 种基金National High Technology Research and Development Program of China(No.2007AA06Z317)Foundation of Ministry of Education of China(No.20070003130)Foundation of the State Key Laboratory of Chemical Engineering(SKL-ChE-08A01)Postdoctor Science Foundation of China (No.023201069)
文摘Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on pe...
基金supported by the Higher Education and High-quality and World-class Universities (PY201618)the National Natural Science Foundation of China (Contract Grant Number 51373014)the National Natural Science Foundation of China (Contract Grant Number 51403012)
文摘The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite membranes have high application value in industrial wastewater treatment. By varying the membrane fabrication parameters including the weight percent(wt%) of the PMDA, the crosslink temperature and duration, membrane with the best desalination performance was obtained. The composite membrane with a 2-lm-thick PVA selective layer containing 20 wt% of PMDA and being crosslinked at 100 °C for 2 h showed the highest Na Cl rejection of 99.98% with a water flux of 32.26 L/(m^2 h)at 70 °C using the 35,000 ppm Na Cl aqueous solution as feed. FTIR spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron microscope have been used to characterize the structures and properties of both the crosslinked PVA dense films and PVA/PAN composite membranes. The effects of the concentrations of PMDA,the crosslinking time and temperature to the membrane water contact angle, swelling degree, salt rejection and water flux were systematically studied.
文摘Pervaporation desalination by highly hydrophilic materials such as poly(vinyl alcohol)(PVA)based separation membrane is a burgeoning technology of late years.However,the improvement of membrane flux in pervaporation desalination has been a difficult task.Here,a novel hybrid membrane with doped graphene oxide quantum dots(GOQDs)which is rich in hydrophilic groups and small size into the matrix of PVA was prepared to improve the membrane flux.The membranes structures were described by field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),Fourier transform infrared(FT-IR),differential scanning calorimetry(DSC),thermogravimetric analysis(TGA)and X-ray diffraction(XRD).And more,Water contact angle,swelling degree,and pervaporation properties were carried out to explore the effect of GOQDs in PVA matrix.In addition,GOQDs content in the hybrid membrane,NaCl concentration,and feed temperature were investigated accordingly.Moreover,the hydrogen bonds between PVA chains were weakened by the interaction between GOQDs and PVA chains.Significantly,the hybrid membrane with optimized doped GOQDs content,200 mg·L^(-1),displays a high membrane flux of 17.09 kg·m^(-2)·h^(-1)and the salt rejection is consistently greater than 99.6%.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金supported by the National Natural Science Foundation of China(22078166)。
文摘A large amount of waste liquids containing methanol/acetone/water mixtures are produced in the synthesis of methyl methacrylate(MMA).Under the advocacy of green chemical industry,it is urgent to develop an efficient,economic and energy-saving mixture separation process.Through thermodynamic azeotropic behavior and pressure sensitivity analysis,pressure-swing distillation was determined and the optimal separation pressure of each column in the process was obtained.Due to the composition of waste liquids produced were quite different in MMA production,the pressure-swing distillation separation process was designed to fully achieve the accurate waste liquids treatment.Taking the total annual cost(TAC)as the target,the sequential iteration method was used to optimize the process,and the impact of composition on economy was compared.In order to further realize the energy-saving of the separation process,the pervaporation membrane module was introduced to pretreat the waste liquid in the pressure-swing distillation.The results showed that the TAC of the coupling process was 46% higher than that of the pressure-swing distillation process,and the thermodynamic efficiency was 30% higher.This study provides waste liquid treatment technology for enterprises and analyzes its economic and energy efficiency,which has reference significance for the development of coupled separation technology.
基金Supported by the State Key Development Program for Basic Research of China (2009CB623404)Program for New Century Excellent Talents in University,the Programme of Introducing Talents of Discipline to Universities (B06006)State KeyLaboratory for Modification of Chemical Fibers and Polymer Materials (Dong Hua University)
文摘A facile surface segregation method was utilized to fabricate poly(vinyl alcohol)-polyethersulfone (PVA-PES) composite membranes. PVA and PES were first dissolved in dimethyl sulfoxide (DMSO), then casted on a glass plate and immersed in a coagulation bath. During the phase inversion process in coagulation bath, PVA spontaneously segregated to the polymer solution/coagulation bath interface. The enriched PVA on the surface was further crosslinked by glutaraldehyde. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS) confirmed the integral and asymmetric membrane structure with a dense PVA-enriched surface and a porous PES-enriched support, as well as the surface enrichment of PVA. The coverage fraction of the membrane surtace by PVA reacned up to 86.8% when me PVA content m me membrane recipe was 16.7% (by mass). The water contact angle decreased with the increase of PVA content. The effect of coagulation bath type on membrane structure was analyzed. The membrane pervaporation performance was evaluated by varying the PVA content, the annealing temperature, feed concentration and operation temperature. The membrane exhibited a fairly good ethanol dehydration capacity and long-term operational stability.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
文摘In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simple solvent evaporation method using four ILs,viz.,1-n-butyl-3-methylimidazolium chloride(BMIMCl),1-hexyl-3-methylimidazolium chloride(HMIMCl),1-hexyl-3-methylimidazolium tetra fluoroborate(HMIMBF4) and 1-octyl-3-methylimidazolium chloride(OMIMCl).Three ILs were used to study the effect of alkyl chain on the pervaporation performance.The study had focused on the effect feed water concentration from 10%–40%and effect of feed temperature from 50–80°C.Physiochemical properties of all the membranes were studied using Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and contact angle measurement.The Arrhenius activation energies for permeation were estimated to be in the range 4–12 kJ·mol-1 from the temperature dependent permeation values.