期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An asymmetric membrane of polyimide 6FDA-BDAF and its pervaporation desulfurization for n-heptane/thiophene mixtures 被引量:1
1
作者 YANG Xiang-dong YE Hong +4 位作者 LI Yan-ting LI Juan LI Ji-ding ZHAO Bing-qiang LIN Yang-zheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2529-2537,共9页
Polyimide(PI) is a type of important membrane material. A soluble polymer was synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride(6FDA) and 2,2-bis[4-(4-aminophenoxy) phenyl] hexafluoroprop... Polyimide(PI) is a type of important membrane material. A soluble polymer was synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride(6FDA) and 2,2-bis[4-(4-aminophenoxy) phenyl] hexafluoropropane(BDAF) by the two-step polymerization method. The polymer was proved to be polyimide 6FDA-BDAF by the Fourier transform infrared(FT-IR), the 1H-NMR and ^(19)F-NMR spectra. An asymmetric membrane was prepared with the synthesized polyimide 6FDA-BDAF, it was porous in the 50 μm height bulk and dense in a 3–5 μm height surface. The membrane was used to separate n-heptane/thiophene mixtures by pervaporation with sulfur(S) contents from 50 to 900 μg g^(–1). The total flux was enlarged from 7.96 to 37.61 kg m^(–2) h^(–1) with temperature increasing from 50 to 90°C. The membrane's enrichments factor for thiophene were about 3.13 and dependent on the experimental conditions. The experimental results demonstrated that polyimide 6FDA-BDAF would be a potential membrane material for desulfurization and controlled release of the S-containing fertilizer. 展开更多
关键词 pervaporation membrane material fertilizer desulfurization n-heptane/thiophene
下载PDF
Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium Alginate Nanofibrous Composite Pervaporation Membrane 被引量:2
2
作者 Peiyun Li Cheng Cheng +3 位作者 Ke Shen Tonghui Zhang Xuefen Wang Benjamin S.Hsiao 《Advanced Fiber Materials》 CAS 2019年第2期137-151,共15页
A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets ... A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets were vacuum-assistant assembled onto porous electrospun polyacrylonitrile(PAN)nanofibrous substrate to achieve a smooth,hydrophilic and compact PEI-GO intermediate layer.The introduction of PEI chains endowed GO interlayer with sufficient interaction for bonding adjacent GO nanosheets to enhance stability in water/isopropanol mixture and also with the ascended inter-lamellar space to improve the water-sorption ability due to the abundant active amino groups.Benefiting from PEI-GO layer,a defect-free sodium alginate(SA)skin layer could be facilely manufactured with elaborately controlled thickness as thin as possible in order to reduce mass transfer resistant and enhance permeability maximally.Meanwhile,the interlayer would also contribute to enhance interfacial adhesion to promote the structure integrity of three-tier thin-film nanofibrous composite(TFNC)membrane in pervaporation dehydration process.After fine-tuning of membrane preparation process,the SA/PEI(75)-GO-60/PAN TFNC membrane exhibited competitive pervaporation performance with the permeate flux of 2009 g/m2 h and the separation factor of 1276 operated at 70°C for dehydration of 90 wt%isopropanol solution.The unique three-tier composite membrane structure suggested an effective and facile approach to design novel membrane structure for further improvement of pervaporation performance. 展开更多
关键词 Polyethyleneimine modified graphene oxide Intermediate layer Thin-film nanofibrous composite membrane pervaporation membrane
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部