Carbendazim,belonging to fungicides,was commonly used for controlling crop diseases,resulting in frequent residues in fruits and vegetables.Washing was the initial step of household fruit processing for cleaning and r...Carbendazim,belonging to fungicides,was commonly used for controlling crop diseases,resulting in frequent residues in fruits and vegetables.Washing was the initial step of household fruit processing for cleaning and reducing pollutant contents.However,the effect of washing on the removal of carbendazim in apples was not systemically studied.Thus,in this study,an analytical method was firstly established for the determination of carbendazim with great accuracy and precision through quick,simple,cheap,effective and safe(QuEChERS)method and ultra-performance liquid chromatography-fluorescence detection(UPLC-FLD).Then,the influencing factors were systematically researched to unveil their effects on the carbendazim residue in apples.The results indicated that water temperature,washing products and washing method could obviously affect the carbendazim content in apples.In addition,the best cleaning scheme for removal of carbendazim was soaking apples for 5 min in a cleaning solution,which was prepared by dissolving 8 g of commercial fruit washing soup with 500 ml of water at 45℃.Under this condition,the removal rate of carbendazim in the washing step reached 73.91%.This study will be helpful for providing guidance for household cleaning methods for controlling pesticide residues.展开更多
The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which i...The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive score (CS) of five parameters (relative growth rate (RGR), biomass, root/shoot ratio, removal capacity (RC), and bio-concentration factor (BCF)) by factor analysis was employed to screen the potential macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and Cyperus rotundus were 42.11 and 24.63μg/(g fw.day), respectively. The highest values of BCF occurred in A. calamus (1.17), and TF occurred in Eichhornia crassipes (2.14). Biomass and root/shoot ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal in the hydroponic system, indicating that plant biomass and root system play important roles in remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation of contaminated water bodies.展开更多
基金Supported by Course Construction Project of Huanggang Normal University(2022KC20)Training Program of the Major Research Plan of Huanggang Normal University(202211604).
文摘Carbendazim,belonging to fungicides,was commonly used for controlling crop diseases,resulting in frequent residues in fruits and vegetables.Washing was the initial step of household fruit processing for cleaning and reducing pollutant contents.However,the effect of washing on the removal of carbendazim in apples was not systemically studied.Thus,in this study,an analytical method was firstly established for the determination of carbendazim with great accuracy and precision through quick,simple,cheap,effective and safe(QuEChERS)method and ultra-performance liquid chromatography-fluorescence detection(UPLC-FLD).Then,the influencing factors were systematically researched to unveil their effects on the carbendazim residue in apples.The results indicated that water temperature,washing products and washing method could obviously affect the carbendazim content in apples.In addition,the best cleaning scheme for removal of carbendazim was soaking apples for 5 min in a cleaning solution,which was prepared by dissolving 8 g of commercial fruit washing soup with 500 ml of water at 45℃.Under this condition,the removal rate of carbendazim in the washing step reached 73.91%.This study will be helpful for providing guidance for household cleaning methods for controlling pesticide residues.
基金supported by the National Natural Science Foundation of China (No. 20877093, 51278355)
文摘The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive score (CS) of five parameters (relative growth rate (RGR), biomass, root/shoot ratio, removal capacity (RC), and bio-concentration factor (BCF)) by factor analysis was employed to screen the potential macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and Cyperus rotundus were 42.11 and 24.63μg/(g fw.day), respectively. The highest values of BCF occurred in A. calamus (1.17), and TF occurred in Eichhornia crassipes (2.14). Biomass and root/shoot ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal in the hydroponic system, indicating that plant biomass and root system play important roles in remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation of contaminated water bodies.