A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-lik...A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-like topology of a definite network is given as the marking of dedicated places. The model represents a network containing workstations, servers, switches, and provides the evaluation of the network response time. Besides topology, the parameters of the model are performances of hardware and software used within the network. Performance evaluation for the network of the railway dispatcher center is implemented. Topics of the steady-stable condition and the optimal choice of hardware are discussed.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
In this paper, we have successfully presented a fuzzy Petri net (FPN) model to design the genetic regulatory network. Based on the FPN model, an efficient algorithm is proposed to automatically reason about imprecis...In this paper, we have successfully presented a fuzzy Petri net (FPN) model to design the genetic regulatory network. Based on the FPN model, an efficient algorithm is proposed to automatically reason about imprecise and fuzzy information. By using the reasoning algorithm for the FPN, we present an alternative approach that is more promising than the fuzzy logic. The proposed FPN approach offers more flexible reasoning capability because it is able to obtain results with fuzzy intervals rather than point values. In this paper, a novel model with a new concept of hidden fuzzy transition (HFT) to design the genetic regulatory network is developed. We have built the FPN model and classified the input data in terms of time point and obtained the output data, so the system can be viewed as the two-input and one output system. This method eliminates possible false predictions from the classical fuzzy model thereby allowing a wider search space for inferring regulatory relationship. The experimental results show the proposed approach is feasible and acceptable to design the genetic regulatory network and investigate the dynamical behaviors of gene network.展开更多
文摘A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-like topology of a definite network is given as the marking of dedicated places. The model represents a network containing workstations, servers, switches, and provides the evaluation of the network response time. Besides topology, the parameters of the model are performances of hardware and software used within the network. Performance evaluation for the network of the railway dispatcher center is implemented. Topics of the steady-stable condition and the optimal choice of hardware are discussed.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金supported by Department of Computer Science Project of University of Jamia Millia Islamia, India (No. 39151-A)
文摘In this paper, we have successfully presented a fuzzy Petri net (FPN) model to design the genetic regulatory network. Based on the FPN model, an efficient algorithm is proposed to automatically reason about imprecise and fuzzy information. By using the reasoning algorithm for the FPN, we present an alternative approach that is more promising than the fuzzy logic. The proposed FPN approach offers more flexible reasoning capability because it is able to obtain results with fuzzy intervals rather than point values. In this paper, a novel model with a new concept of hidden fuzzy transition (HFT) to design the genetic regulatory network is developed. We have built the FPN model and classified the input data in terms of time point and obtained the output data, so the system can be viewed as the two-input and one output system. This method eliminates possible false predictions from the classical fuzzy model thereby allowing a wider search space for inferring regulatory relationship. The experimental results show the proposed approach is feasible and acceptable to design the genetic regulatory network and investigate the dynamical behaviors of gene network.