期刊文献+
共找到1,357篇文章
< 1 2 68 >
每页显示 20 50 100
Petrology,geochemistry,and crystal size distribution of the basaltic andesite-dacite association at Mt.Sumbing,Central Java,Indonesia:Insights to magma reservoir dynamics and petrogenesis
1
作者 Indranova Suhendro Endra Yuliawan +6 位作者 Revina Fitri Zen Zulfa Yogi Rahmawati Pandu Eka Priyana Sonna Diwijaya Muhammad Alsamtu Tita Sabila Pratama Suhartono Andre Jonathan Gammanda Adhny El Zamzamy Latief 《Acta Geochimica》 EI CAS CSCD 2024年第5期838-855,共18页
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str... Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2). 展开更多
关键词 Sumbing Whole-rock geochemistry petrogenesiS FRACTIONATION Magma mixing Crystal size distribution
下载PDF
Zircon U-Pb geochronologic,geochemical and Sr-Nd-Pb isotope characteristics of the Beidaban granites in the North Qilian Orogenic Belt:Petrogenesis and tectonic implications
2
作者 Tao Yang Zhi-yuan Sun +2 位作者 Ming-liang Wang Xiao-qiang Zhu Jing-yu Zhao 《Acta Geochimica》 EI CAS CSCD 2024年第6期1087-1104,共18页
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition ... The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma). 展开更多
关键词 GRANITOIDS Zircon U-Pb dating Sr-Nd-Pb-isotopes petrogenesiS North Qilian Orogenic Belt
下载PDF
Petrogenesis and tectonic implications of the Silurian adakitic granitoids in the eastern segment of the Qilian Orogenic Belt,Northwest China
3
作者 Jiao-Long Zhao Xiao-Jun Huang +5 位作者 Pei-Qing Hu Zhen-Xi Yang Ying Fan Er-Teng Wang Fu-Bo Yang Jing-Yu Zhang 《Acta Geochimica》 EI CAS CSCD 2024年第1期72-86,共15页
Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and sy... Geodynamic mechanism responsible for the generation of Silurian granitoids and the tectonic evolution of the Qilian orogenic belt remains controversial. In this study, we report the results of zircon U–Pb age, and systematic whole-rock geochemical data for the Haoquangou and Liujiaxia granitoids within the North Qilian orogenic belt and the Qilian Block, respectively, to constrain their petrogenesis, and the Silurian tectonic evolution of the Qilian orogenic belt. Zircon U–Pb ages indicate that the Haoquangou and Liujiaxia intrusions were emplaced at423 ± 3 Ma and 432 ± 4 Ma, respectively. The Haoquangou granodiorites are calc-alkaline, while the Liujiaxia granites belong to the high-K calc-alkaline series.Both are peraluminous in composition and have relatively depleted Nd isotopic [ε_(Nd)(t) =(-3.9 – + 0.6)] characteristics compared with regional basement rocks, implying their derivation from a juvenile lower crust. They show adakitic geochemical characteristics and were generated by partial melting of thickened lower continental crust. Postcollisional extensional regime related to lithospheric delamination was the most likely geodynamic mechanism for the generation of the Haoquangou granodiorite, while the Liujiaxia granites were generated in a compressive setting during continental collision between the Qaidam and Qilian blocks. 展开更多
关键词 Silurian adakitic granitoids petrogenesiS Tectonic setting Qilian Orogenic Belt
下载PDF
Geochemistry of intrusive rock in Dachang tin-polymetallic ore field, Guangxi, China: Implications for petrogenesis and geodynamics 被引量:5
4
作者 成永生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期284-292,共9页
The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%... The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%) mainly consist of quartz, K-feldspar and plagioclase. The rock is composed of low content of Si and high content of Al2O3, low contents of Ca, Fe2O3, Na, TiO2, etc. The intrusion rock has the medium alkali content, attributing to K-rich type rock; and contains medium to low REE contents, of which light rare earth elements(LREEs) and heavy rare earth elements(HREEs) are highly fractionated, showing a weak negative Ce anomaly and a negative Eu anomaly. These rocks are enriched in LREE, and the large ion lithophytes elements(LILE) are rich in Rb, Sr, and U; the high-field-strength elements(Nb, Th, etc) are relatively depleted. The REE chondrite-normalized patterns are consistent with the overall, roughly indicating their similar characteristics, sources and evolution. The intrusion rock mainly formed during the collisional and within-plate periods. 展开更多
关键词 GEOCHEMISTRY petrogenesiS tectonic setting magma evolution Dachang ore field GUANGXI
下载PDF
Petrogenesis of skarn in Shizhuyuan W-polymetallic deposit, southern Hunan,China:Constraints from petrology,mineralogy and geochemistry 被引量:2
5
作者 成永生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1676-1687,共12页
Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were st... Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting. 展开更多
关键词 SKARN petrogenesiS GEOCHEMISTRY Shizhuyuan W-polymetallic deposit southern Hunan
下载PDF
Zircon LA-ICP MS U-Pb Age,Sr-Nd-Pb Isotopic Compositions and Geochemistry of the Triassic Post-collisional Wulong Adakitic Granodiorite in the South Qinling,Central China,and Its Petrogenesis 被引量:22
6
作者 QIN Jiangfeng LAI Shaocong +1 位作者 WANG Juan LI Yongfei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第2期425-437,共13页
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact rel... The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt. 展开更多
关键词 zircon LA-ICP-MS dating Sr-Nd-Pb isotope geochemistry South Qinling Wulong pluton adakitic magma petrogenesiS
下载PDF
Petrogenesis of Indosinian Granitoids in Middle-Segment of South Qinling Tectonic Belt:Constraints from Sr-Nd Isotopic Systematics 被引量:20
7
作者 LIU Shuwen LI Qiugen +5 位作者 TIAN Wei WANG Zongqi YANG Pengtao WANG Wei BAI Xiang GUO Rongrong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第3期610-628,共19页
South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui g... South Qinling Tectonic Belt(SQTB)is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures.There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast,Huayang-Wulong-Laocheng granitoid plutons at the central part,Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest.These Indonisian granitoids contain a mass of various scale mafic enclaves,which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids.These granitoids also exhibit metaluminous to peraluminous series,commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series,through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series.Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons,comprising Dongjiangkou-Zhashui,Huayang-Wulong-Laocheng,Xiba,and Guangtoushan-Liuba granitoid plutons,which were produced by hybrids of magmas in various degrees,and the initial magmas were derived from both the mantle and the lower continental crust(LCC)sources in the SQTB.The initial granitoid magma further did the magma hybrid with the magmas from the LCC,crystallization fractionation,and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB.These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds. 展开更多
关键词 South Qinling tectonic belt Indonisian granitoids PETROCHEMISTRY Sr-Nd isotopic svstematics petrogenesiS early Mesozoic tectonic backgrounds
下载PDF
Petrogenesis of the Xihuashan Granite in Southern Jiangxi Province,South China:Constraints from Zircon U-Pb Geochronology,Geochemistry and Nd Isotopes 被引量:20
8
作者 YANG Jiehua PENG Jiantang +3 位作者 ZHAO Junhong FU Yazhou YANG Chen HONG Yinglong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期131-152,共22页
Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representat... Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas. 展开更多
关键词 U-Pb dating of zircon GEOCHEMISTRY Nd isotope petrogenesis of Xihuashan granite Nanling region
下载PDF
Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics 被引量:13
9
作者 WANG Kunming WANG Zongqi +1 位作者 ZHANG Yingli WANG Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期187-202,共16页
The Xuhe mafic rocks, located in Ziyang county of Shaanxi Province, are dominated by diabase-porphyrite, gabbro-diabase, diabase, and pyroxene diorite. Primitive mantle-normalized multi-element patterns show that, the... The Xuhe mafic rocks, located in Ziyang county of Shaanxi Province, are dominated by diabase-porphyrite, gabbro-diabase, diabase, and pyroxene diorite. Primitive mantle-normalized multi-element patterns show that, the Xuhe marie rocks are enriched in large ion lithophile elements (LITE), such as Ba and Pb, depleted in K and Sr for basic rocks, and are depleted in Sr, P and Ti for pyroxene diorite. Chondrite-normalized REE patterns display LREE enrichment (LaN/YbN = 9.34- 13.99) and have normalized patterns for trace element and REE similar to that of typical OIB. Detailed SIMS zircon U-Pb dating yields emplacement ages of 438.4 ± 3.1 Ma for Xuhe mafic rocks. The relatively low MgO (basic rock: 3.11-7.21 wt%; pyroxene diorite: 0.89-1.21 wt% ) and Mg# (0.20- 0.49) for Xuhe mafic rocks suggest that they were possibly originated from an extremely evolved magma. The rising parental mafic magmas underwent pyroxene and plagioclase fractionation. Crustal contamination of pyroxene diorite before emplacement occurred at a higher crustal level compared to other lithology in Xuhe mafic rocks. The degree of partial melt was low (5%-10%) and in garnetspinel transition facies. Sr-Nd isotope of pyroxene diorite and enrichment mantle characteristics for Xuhe mafic rocks suggest that mafic rocks in the North Daba Mountains were derived from a mixture of HIMU, EMII and small amount of EMI components. Furthermore, this study discusses mantle geodynamic significance of Xuhe mafic rocks in the Silurian, which indicates subduction and uplift of magma caused back-arc extension. 展开更多
关键词 Xuhe mafic rock SIMS U-Pb chronology GEOCHEMISTRY petrogenesiS mantle dynamic
下载PDF
Guandishan Granitoids of the Paleoproterozoic Lüliang Metamorphic Complex in the Trans-North China Orogen:SHRIMP Zircon Ages,Petrogenesis and Tectonic Implications 被引量:10
10
作者 LIU Shuwen LI Qiugen LIU Chaohui LU Yongjun ZHANG Fan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第3期580-602,共23页
The Paleoproterozoic Liiliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithologic... The Paleoproterozoic Liiliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right- declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U-Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at -2.17 Ga, the early gneissic monzogranites at -2.06 Ga, and the younger gneissic to massive monzogranites at -1.84 Ga. Sm-Nd isotopic data show that the early gneissic tonalities and granodiorites have eNd(t) values of +0.48 to -3.19 with Nd-depleted mantle model ages (TDM) of 2.76--2.47 Ga, and early gneissic monzogranites have eNd(t) values of -0.53 to -2.51 with TDM of 2.61--2.43 Ga, and the younger gneissic monzogranites have eNd(t) values of -6.41 to -2.78 with a TDM of 2.69--2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift. 展开更多
关键词 Guandishan granitoid petrogenesis SHRIMP zircon geochronology geochemistry Ndisotopes Paleoproterozoic Liiliangshan Complex Trans-North China Orogen North China craton.
下载PDF
Geology,Geochemistry and Zircon U-Pb Geochronology of Porphyries in the Dabate Mo-Cu Deposit,Western Tianshan,China:Petrogenesis and Tectonic Implications 被引量:8
11
作者 DUAN Shigang ZHANG Zuoheng +1 位作者 WANG Dachuan LI Fengming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期530-544,共15页
The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the D... The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting. 展开更多
关键词 porphyry Cu-Mo deposit post-collisional extension zircon U-Pb age petrogenesiS Dabate TIANSHAN Proto-Tethys
下载PDF
Xiba Granitic Pluton in the Qinling Orogenic Belt, Central China: Its Petrogenesis and Tectonic Implications 被引量:14
12
作者 ZHANG Fan LIU Shuwen +5 位作者 CHEN Xu LI Qiugen DAI Junzhi YANG Kai WU Fenghui CHEN Youzhang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第5期1128-1142,共15页
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHR... Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U-Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb) N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of 8.79 to 5.38, depleted mantle Nd model ages (T DM ) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios ( 87 Sr/ 86 Sr) i from 0.7061 to 0.7082, indicating a possible Meso-to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher ( 87 Sr/ 86 Sr) i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting. 展开更多
关键词 Xiba granitoids SHRIMP U-Pb ages geochemistry and Sr-Nd isotopic systematics petrogenesis and tectonic implication Qinling orogenic belt
下载PDF
Petrogenesis of the Paleoproterozoic Guandishan Granitoids in Shanxi Province:Constraints from Geochemistry and Nd Isotopes 被引量:5
13
作者 LIU Chaohui LIU Shuwen +3 位作者 LI Qiugen Lü Yongjun K. H. PARK Y. S. SONG 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第6期925-935,共11页
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1... The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton. 展开更多
关键词 GRANITOIDS GEOCHEMISTRY Sm-Nd isotopes petrogenesiS PALEOPROTEROZOIC Guandishan
下载PDF
Age and geochemistry of the Neoproterozoic granitoids in the the Songnen–Zhangguangcai Range Massif, NE China: Petrogenesis and tectonic implications 被引量:14
14
作者 LUAN Jinpeng XU Wenliang +2 位作者 WANG Feng WANG Zhiwei GUO Peng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期86-87,共2页
The Songnen–Zhangguangcai Range Massif(SZRM)is located in the eastern Central Asian Orogenic Belt and crops out over an extensive part of NE China.The massif was originally thought to contain numerous Precambrian ter... The Songnen–Zhangguangcai Range Massif(SZRM)is located in the eastern Central Asian Orogenic Belt and crops out over an extensive part of NE China.The massif was originally thought to contain numerous Precambrian terranes(e.g.,Xingdong,Dongfengshan,Yimianpo and Zhangguangcailing groups).However,more recent zircon U–Pb dating indicates that the majority of these so-called Precambrian sedimentary and igneous rocks actually formed during either the Paleozoic or Mesozoic and contain only minor Precambrian components(Wang et al.,2014).The presence of Neoproterozoic and Paleoproterozoic detrital zircons with magmatic origins from and Paleozoic units of the SZRM indicating that this area occurs Proterozoic magmatism(Wang et al.,2014),whereas no Proterozoic magmastism has been found.Recently,Pei et al.(2007)reported the ca.1800Ma magmastism,as evidenced by the data of exploration drillholes in the southern Songliao basin.However,an alternative view is that the basement within the SZRM is predominantly Phanerozoic,as evidenced by the presence of Paleozoic fossils and comparatively rare geochronological data(Guo and Liu,1985;Wu et al.,2011),meaning that the ca.1800 Ma rocks in this area may be a tectonically emplaced slice of the North China Craton(Zhang et al.,2005).All of this means that the age and nature of the SZRM basement,and whether this area records Neoproterozoic magmatism,remain unclear.This study presents new geochronological,whole-rock geochemical,and zircon Hf isotopic data for early Proterozoic granitoids within the eastern margin of the SZRM of NE China.These data provide insights into the Neoproterozoic tectonic setting of the SZRM and the links between this magmatism and the evolution of the Rodinia supercontinent.The zircon U–Pb dating indicates that the Neoproterozoic magmatism within the SZRM can be subdivided into two stages:(1)a^917–911 Ma suite of syenogranites and monzogranites,and(2)an^841 Ma suite of granodiorites.The 917–911 Ma granitoids contain high concentrations of Si O2(67.89–71.18 wt.%),K2O(4.24–6.91 wt.%),and Al2O3(14.89–16.14 wt.%),and low concentrations of TFe2O3(1.63–3.70 wt.%)and Mg O(0.53–0.88 wt.%).They are enriched in the light rare earth elements(LREE)and the light ion lithophile elements(LILE),are depleted in the heavy REE(HREE)and the heavy field strength elements(HFSE;e.g.,Nb,Ta,and Ti),and have slightly positive Eu anomalies,indicating they are geochemically similar to high-K adakitic rocks.They have zirconεHf(t)values and TDM2 ages from–4.4 to+1.5and from 1915 Ma to 1592 Ma,respectively,suggesting they were derived from a primary magma generated by the partial melting of ancient thickened lower crustal material.In comparison,the 841 Ma granodiorites contain relatively low concentrations of Al2O3(14.50–14.58 wt.%)and K2O(3.27–3.29 wt.%),relatively high concentrations of TFe2O3(3.78–3.81 wt.%)and the HREE,have negative Eu anomalies,and have zirconεHf(t)values and TDM2ages from–4.7 to+1.0 and from 1875 to 1559 Ma,respectively.These granodiorites formed from a primary magma generated by the partial melting of ancient crustal material.The^917–911 Ma magmatism within the SZRM is inferred to have formed in an orogenic setting,whereas the^841 Ma magmatism formed in an anorogenic setting related to either a post-orogenic tectonic event or the onset of Neoproterozoic continental rifting.It is proposed that the microcontinental massifs within the SZRM formed during or following the final stage of assembly of Rodinia before rifting away from the Tarim Craton in response to Rodinia breakup. 展开更多
关键词 NE China petrogenesis and tectonic implications Zhangguangcai Range Massif Age and geochemistry of the Neoproterozoic granitoids in the the Songnen
下载PDF
Petrogenesis of the~2115 Ma Haicheng Mafic Sills in the Eastern North China Craton and Their Implications for An Intra-Continental Rifting 被引量:30
15
作者 WANG Xinping PENG Peng +1 位作者 WANG Chong YANG Shuyan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期128-,共1页
It is well known that there are widespread igneous events at;100 Ma in the Eastern North China Craton;however,their tectonic environments are controversial.They were thought to be either related to an intra-continenta... It is well known that there are widespread igneous events at;100 Ma in the Eastern North China Craton;however,their tectonic environments are controversial.They were thought to be either related to an intra-continental rifting or 展开更多
关键词 Ma Haicheng Mafic Sills in the Eastern North China Craton and Their Implications for An Intra-Continental Rifting petrogenesis of the
下载PDF
Geochronological and Geochemical Constrains on Petrogenesis of the Jietebutiao A-type Granite in West Junggar,Xinjiang 被引量:3
16
作者 YANG Gaoxue LI Yongjun +3 位作者 TONG Lili ZHANG Bing TIAN Zhixian YANG Baokai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期131-147,共17页
Late Paleozoic post-collisional granitoids are widespread in West Junggar, as well as northern Xinjiang. As a representative of those intrusions, the Jietebutiao granite occurs in the southwestern margin of the West J... Late Paleozoic post-collisional granitoids are widespread in West Junggar, as well as northern Xinjiang. As a representative of those intrusions, the Jietebutiao granite occurs in the southwestern margin of the West Junggar (northwest China), and is mainly composed of mid-coarse- grained monzogranite and syenogranite. In the present study, we report the results of high-precision zircon laser-ablation-inductively-coupled plasma mass-spectrometry U-Pb dating on the Jietebutiao granite for the first time, and yield weighted mean 2~~pb/23SU ages of 287 + 9 Ma and 278 ~ 3 Ma for monzogranite and syenogranite, respectively. The Jietebutiao granite has a pronounced A-type affinity; it is metaluminous to slightly peraluminous; has a high-K calc-alkaline composition; high concentrations of Na20 + I(20, varying from 6.8 to 8.5 wt%; high FeOt/MgO; 10 000Ga/AI ratios, a low CaO, MgO, and TiO2 content; enriched in some large ion lithophile elements (LILE, such as Rb and Th) and high field strength elements (HFSE, such as Zr, Hf, and Y); and depleted in Sr, Ba, and Ti. In addition, the granite has a relatively high rare earth element (REE) content (except for Eu), with significant negative Eu anomalies (Eu/Eu* = 0.01-0.72), and showing slight tetrad REE patterns and non-charge and radius controlled (CHARAC) trace element behavior. Petrographic, geochemical, and geochronological data suggest that the parental magma of Jietebutiao intrusions are of mixed origin, and are most probably formed by the interaction between the lower crust- and mantle-derived magmas in the Early Permian post-collisional tectonic setting. The basaltic magmas underplated and interacted with the lower crust that was dominated by deeply buried arc (and back-arc basin) series and the oceanic crust formed in the Paleozoic, and then triggered the partial melting of the juvenile lower crust, producing voluminous granitic melts and forming the Jietebutiao A2-type monzogranites, with the lithospheric mantle progressively thinning and rifting to form Al-type granites, such as syenogranites, in the Jietebutiao pluton. This further proves the important contribution of Late Paleozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang. 展开更多
关键词 A-type granite GEOCHRONOLOGY petrogenesiS POST-COLLISIONAL West Junggar
下载PDF
The Petrology, Geochemistry, and Petrogenesis of E-MORB-type Mafic Rocks from the Guomangco Ophiolitic Mélange, Tibet 被引量:3
17
作者 XU Mengjing LI Cai +1 位作者 WU Yanwang XIE Chaoming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1437-1453,共17页
The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy.... The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy. The study of the Guomangco ophiolitic melange is very important for investigating the tectonic evolution of the SYJMB. The mafic rocks of this ophiolitic melange mainly include diabases, sillite dikes, and basalts. Geochemical analysis shows that these dikes mostly have E-MORB major and trace element signatures; this is the first time that this has been observed in the SYJMB. The basalts have N-MORB and IAB affinities, and the mineral chemistry of harzburgites shows a composition similar to that of SSZ peridotites, indicating that the Guomangco ophiolitic melange probably originated in a back-arc basin. The Guomangco back-arc basin opened in the Middle Jurassic, which was caused by southward subduction of the Neo-Tethys Ocean in central Tibet. The main spreading of this back-arc basin occurred during the Late Jurassic, and the basalts were formed during this time. With the development of the back-arc basin, the subducted slab gradually retreated, and new mantle convection occurred in the mantle wedge. The recycling may have caused the metasomatized mantle to undergo a high degree of partial melting and to generate E- MORBs in the Early Cretaceous. E-MORB-type dikes probably crystallized from melts produced by about 20%-30% partial melting of a spinel mantle source, which was metasomatized by melts from low-degree partial melting of the subducted slab. 展开更多
关键词 Guomangco ophiolitic melange E-MORB GEOCHEMISTRY petrogenesiS TIBET
下载PDF
Geochemical Constrains on Petrogenesis and Tectonic Setting of Volcanic Rocks from the Baimianxia and Sanwan Formations in the Northern Margin of the Yangtze Plate 被引量:3
18
作者 XU Xuey CHEN Junlu1 +4 位作者 LI Xiangmin MA Zhongping WANG Hongliang LI Ping LI Ting 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第6期1336-1350,共15页
On the basis of petrogeochemical data, the volcanic lavas of the Baimianxia Formation can be classified into two units: high TiO2 and low TiO2. The TiO2 concentration of the former is generally higher than 1%, which ... On the basis of petrogeochemical data, the volcanic lavas of the Baimianxia Formation can be classified into two units: high TiO2 and low TiO2. The TiO2 concentration of the former is generally higher than 1%, which occurs in the lower part with high-grade metamorphism, but the latter is less than 1% and crops out in the upper part with low-grade metamorphism. The high-TiO2 unit is dominated by tholeiitic lavas showing high rare earth element (REE) contents (~REE = 83.4-180.8 pg/ g), high light/heavy REE (LREE/HREE) ratios (LREE/HREE=2.17-5.85) and weak negative Eu anomaly (Eu=0.79-1.01). Its trace element patterns display weak Nb-Ta anomalies with respect to Th, K, La, Ce, showing within-plate basalt affinities. In contrast, the low-TiO2 unit is characterized by low REE contents, low LREE/HREE ratios, and pronounced Nb-Ta anomalies, indicating typical arc or continental arc signature. Chondrite-normalized REE patterns of basalts and andesites from the Sanwan Formation are flat or LREE depletion, which is very similar to normal mid-oceanic basalt. Therefore, we suggest that these lavas should be formed in a back-arc basin setting. Sr-Nd isotopic data of the basalt in the lower part suggest that the rocks would have been formed in ~1144 Ma. Based on the geochemical and isotopic features of the basalts, we suggest that these rocks in the low part of the Baimianxia Formation should originate from an asthenospheric oceanic-island basalt-like mantle source, which may be produced by partial melting of garnet lherzolite, and significantly underwent fractional crystallization and crustal or lithospheric mantle contamination en route to the surface. However, laser ablation inductively coupled plasma mass spectrometry zircon U-Pb dating of the basalt sample from the upper part of the Baimianxia Formation gives a 437 Ma, indicating a Early Paleozoic age. The geochemical analysis in this paper suggests that they may originate from an arc or continental arc in response to aqueous fluids or melt expelled from a subducting slab, and the partial melting occurred in the garnet stability field. The samples of basalts and andesites in the Sanwan Formation show they are derived from depleted mantle source similar to normal mid-oceanic basalt. Finally, we can conclude that the lavas in the lower part of the Baimianxia Formation represent the geological records of rift-related volcanism in the middle Proterozoic, which is commonly considered to be the precursor of continental breakup and followed by oceanic basin forming from Neoproterozoic to early Paleozoic. Whereas, the lavas in upper part of the Baimianxia Formation and Sanwan Formations may have been generated by the oceanic and continental conversion that occurred in the early Paleozoic. 展开更多
关键词 petrogenesiS petrogeochemistry U-Pb dating Baimianxia and Sanwan Formations
下载PDF
Zircon Geochronology and Trace Element Geochemistry from the Xiaozhen Copper Deposit, North Daba Mountain: Constraints on Albitites Petrogenesis 被引量:3
19
作者 WANG Gang WANG Zongqi +1 位作者 ZHANG Yingli WANG Kunming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第1期113-127,共15页
Albitite often accompanies with various metal and gem mineral deposits and a large number of occurrences have been reported globally, including the South Qinling orogen, China. The Xiaozhen copper deposit is a typical... Albitite often accompanies with various metal and gem mineral deposits and a large number of occurrences have been reported globally, including the South Qinling orogen, China. The Xiaozhen copper deposit is a typical deposit in the North Daba Mountain area of the South Qinling orogen whose distribution is controlled by albitite veins and fractures. As there are few studies on the petrogenesis of albitite in Xiaozhen copper deposit, this paper focuses on the petrogenesis of albitite and its mineralization age. Detailed fieldwork and mineral microscopic observations initially suggest that albitite from the Xiaozhen copper deposit is igneous in origin. Further zircon trace element geochemistry studies indicate that these zircons have high Th/U ratios(〉0.5), low La content, high(Sm/La)N and Ce/Ce*values, and a strong negative Eu anomaly, which are commonly seen in magmatic zircons. The chondrite–normalized rare earth element(REE) patterns are consistent with magmatic zircons from throughout the world, and they fall within or near the field of magmatic zircons on discriminant diagrams. The calculated average apparent Ti–in–zircon temperature for young zircons is 780°C, consistent with magmatic zircon crystallization temperatures. Therefore, zircon geochemistry indicates that the albitite origin is magmatic. SIMS U–Pb dating on nine magmatic zircons yielded a concordia age of 154.8±2.2 Ma, which represents the formation of albitite and the metallogenic age. More importantly, it is consistent with the ages of Yanshanian magmatism and metallogenesis in the South Qinling orogen, so formation of the Xiaozhen copper deposit may be a closely related geological event. 展开更多
关键词 Albitite petrogenesis SIMS zircon geochronology zircon trace element geochemistry Xiaozhen copper deposit North Daba Mountain
下载PDF
Geochronology and Geochemistry of the Early Permian A-Type Granite in the Hongol Area, Central Inner Mongolia:Petrogenesis and Tectonic Implications 被引量:3
20
作者 ZHANG Xiangxin GAO Yongfeng LEI Shihe 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第3期988-1007,共20页
We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying th... We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing’an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yieldsPb/U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO=75.13 wt%-80.17 wt%), aluminum(AlO=10.59 wt%-13.17 wt%) and alkali(NaO+KO=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε(t)(+0.72-+3.08), low T(805-997 Ma),and high radioactive Pb with(Pb/Pb)of 18.710-19.304,(Pb/Pb)of 15.557-15.604 and(Pb/Pb)of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia. 展开更多
关键词 aluminous A-type granite zircon U-Pb dating petrogenesiS slab breakoff Xing'an Mongolian Orogenic Belt China
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部