The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in...The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.展开更多
A two-stage mixed integer linear programming model(MILP)incorporating a novel method of stochastic scenario generation was proposed in order to optimize the economic performance of the synergistic combination of midst...A two-stage mixed integer linear programming model(MILP)incorporating a novel method of stochastic scenario generation was proposed in order to optimize the economic performance of the synergistic combination of midstream and downstream petrochemical supply chain.The uncertainty nature of the problem intrigued the parameter estimation,which was conducted through discretizing the assumed probability distribution of the stochastic parameters.The modeling framework was adapted into a real-world scale of petrochemical enterprise and fed into optimization computations.Comparisons between the deterministic model and stochastic model were discussed,and the influences of the cost components on the overall profit were analyzed.The computational results demonstrated the rationality of using reasonable numbers of scenarios to approximate the stochastic optimization problem.展开更多
Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical ...Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical and basin modeling analysis,hydrocarbon generation capacity and process of the Paleocene E_(1)y,E_(1)l and E_(1)m formations were investigated.Results show that E_(1)y and E_(1)l mudstones are high-quality source rocks with Type Ⅱ kerogen,which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment.E_(1)m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with Type Ⅲ kerogen,whose organic matter was originated from terrestrial higher plants under oxidized environment.Controlled by burial and maturity histories,E_(1)y and E_(1)l source rocks experienced two hydrocarbon generation stages,which took place in the Late Paleocene and in the Middle to Late Eocene,respectively,and had high hydrocarbon generation capacity with cumulative hydrocarbon volume of 363 and 328 mg/g,respectively.E_(1)m source rock only had one hydrocarbon generation process in the Late Eocene,which had low hydrocarbon generation capacity with cumulative hydrocarbon volume of only 24 mg/g.The future oil-gas exploration in the Jiaojiang sag should focus on hydrocarbon generation center and select targets in the central uplift formed before the Miocene with high-quality traps.展开更多
Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and the...Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area.展开更多
The enhancement of organic-matter maturation and petroleum generation by the migration and accumulation of active hydrothermal fluids in the high thermal-gradient, strongly overpressured environments in the Yinggehai ...The enhancement of organic-matter maturation and petroleum generation by the migration and accumulation of active hydrothermal fluids in the high thermal-gradient, strongly overpressured environments in the Yinggehai and Qiongdongnan basins is systematically demonstrated by combination of geological, geochemical analysis and basin modeling. The retardation of organic-matter thermal evolution by abnormal pore-pressure is recognized, its manifestation and dynamic mechanism are illustrated, and chemical kinetic modeling of the pressure retardation is carried out. On this basis, the model of organic-matter thermal evolution and petroleum generation in high thermal-gradient, strongly overpressured environments is summarized. A correct understanding of the effects of active hydrothermal fluids and abnormal pore-fluid pressures on organic-matter thermal evolution is of great theoretical and practical significance for thermal history analysis, basin modeling and petroleum resource evaluation.展开更多
Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource p...Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.展开更多
Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter content...Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter contents composed of oil-prone type I and type II kerogens within the oil window.Various types of pores and fractures exist in the shale,with a porosity of up to 14.9%.The shale has high brittle mineral contents,extensive fractures,and high potential for oil mobility due to high seepage capacity and overpressure.Although the petroleum generation potential of the shale at Well PS18-8 is relatively greater than that at Well PS18-1,oil content of the latter is greater due to the greater TOC.The porosity and fracture density observed in Well PS18-1 are greater and more conducive to shale oil enrichment.Although the shales in Wells PS18-1 and PS18-8 have similar brittle mineral contents,the former is more favorable for anthropogenic fracturing due to a higher preexisting fracture density.Besides,the shale at Well PS18-1 has a higher seepage capacity and overpressure and therefore a higher oil mobility.The fracture density and overpressure play key roles in shale oil enrichment.展开更多
Having undergone four basin forming tectonic cycles--Hercynian, Indosinian, Yanshanian, and Himalayan, the Junggar basin becomes a multi cyclic superposed basin of old and hard mediun block pattern. Its multi cyclic t...Having undergone four basin forming tectonic cycles--Hercynian, Indosinian, Yanshanian, and Himalayan, the Junggar basin becomes a multi cyclic superposed basin of old and hard mediun block pattern. Its multi cyclic tectonic and sedimentary evolution results in five series of hydrocarbon source rock formations--Carboniferous, Permian, Upper Triassic, Middle lower Jurassic, and Lower Tertiary, correspondingly forming five petroleum generation systems, of which the Permian and Middle lower Jurassic petroleum generation systems are the most important with the highest exploration degree. Hydrocarbons are controlled by basin structure as follows: 1) Hydrocarbon accumulations are controlled by the structural styles of paleo uplifts, paleo overthrust belts and contorted anticline belts formed in multi cyclic tectonic movements; 2) Important pathways for long distance lateral and vertical migration are provided respectively by unconformities and faults; 3) The pool forming characteristics of the Permian petroleum system are controlled by paleo structure; 4) The pool forming characteristics of Jurassic and Tertiary petroleum system are controlled by recent structures.展开更多
On the basis of thermal maturation theories of organic matter in sediments and an improved Harweil’s method, a method for dating hydrocarbon generation and migration by means of bitumen reflectance has been suggested...On the basis of thermal maturation theories of organic matter in sediments and an improved Harweil’s method, a method for dating hydrocarbon generation and migration by means of bitumen reflectance has been suggested. A few representative boreholes in the Tazhong Area of the Tarim Basin was investigated by this method. The results indicate that the three phases of bitumen from the Tazhong Area formed during Middle and Late Ordovician, Late Cretaceous-Early Tertiary, and Late Tertiary, respectively. This implicates that there were three phases of hydrocarbon generation and migration occurring in this area during geological history. This study provided a new idea for the geological application of geochemical data of bitumen.展开更多
Most of petroliferous sedimentary basins in China have experienced multiple phases of tectonic evolution and deposition, and are characterized by tectonic and depositional superimposition. The term "superimposed ...Most of petroliferous sedimentary basins in China have experienced multiple phases of tectonic evolution and deposition, and are characterized by tectonic and depositional superimposition. The term "superimposed basin" is suggested to describe those basins which consist of two or more simple prototype basins superimposing vertically and/or coalescing later-ally. The characteristics of petroliferous superimposed basins are "multiple stages of basin forming and reworking, multiple layers of source rocks, multiple periods of hydrocarbon genera-tion and expulsion, multiple periods of petroleum migration-accumulation-escape". Therefore, applying the wave process analysis method to studying the process of basin formation, hydro-carbon generation, and reservoir formation, and then establishing theory of "petroleum accumu-lation system" is helpful to enhancing petroleum exploration efficiency in superimposed basins. This paper will, based on case study in the Tarim basin, report the major developments in studying basin formation, hydrocarbon generation and petroleum accumulation. In study of basin formation, (1) geophysical comprehensive profiles reveal that the Tarim plate has been sub-ducted beneath the Tianshan orogenic belt with an interfinger structure and that the deep struc-ture in the eastern section of the Tianshan orogenic belt is different from that in the western sec-tion. (2) The vertical variation in debris and geochemical composition reveals the nature and Mesozoic-Cenozoic evolution history of the Kuqa Depression. (3) Field investigation and paleo-stress reconstruction show that the Kuqa Depression has undergone gravity-driven extension in sedimentary cover when the Tianshan uplifted vertically. In hydrocarbon generation study, new developments include (1) setting environmental index to judge high grade source rocks in marine carbonates, and (2) establishing the lower limit of the organic carbon content for effective car-bonate source rocks. In petroleum accumulation study, (1) methods of determining paleopres-sure and paleotemperature of forming fluid inclusions have been established. (2) The petroleum source analysis has indicated that the erude oil in the Lunnan and Tahe oilfields are derived from the source rocks of the Middle and Upper Ordovician. (3) Three generations of oil inclusions from the Lunnan oilfield have been recognized and dated.展开更多
The Junggar Basin is one of the largest and most petroliferous superimposed petroleum basins in China. The central depression area has become the frontier field for petroleum exploration. The characteristics of potent...The Junggar Basin is one of the largest and most petroliferous superimposed petroleum basins in China. The central depression area has become the frontier field for petroleum exploration. The characteristics of potential source rocks and reservoir sandstones, and the pressure regime in the central Junggar Basin were studied. Permian shales are dominated by hydrogen-rich, oil-prone algal organic matter, and Jurassic mudstones are dominated by hydrogen-poor, higher-plant derived organic matter. These source rocks are widespread and have been mature for hydrocarbon generation, suggesting good to excellent exploration potential, both for crude oils and for natural gases. The deeply buried Jurassic sandstones usually have low porosity and permeability. However, sandstones beneath the Jurassic/Cretaceous unconformity display relatively high porosity and permeability, suggesting that meteoric water leaching had improved the quality of the sandstones. Overpressure developed over much of the central Junggar Basin. The overpressured rocks are characterized by slightly increased interval transit time, low sandstone permeability, increased organic matter maturity, and high relative hydrocarbon-gas contents. Mudstones in the overpressured system have quite the same clay mineral compositions as mudstones in the lower part of the normally pressured system. Overpressure generation in the central Junggar Basin is best to be explained as the result of hydrocarbon generation and fluid retention in low-permeability rocks. Petroleum generated from Permian and Jurassic source rocks could migrate laterally through preferential petroleum migration pathways and accumulated in structural traps or lithological traps in the overpressured system, or migrate vertically through faults/ hydraulic fractures into the overlying, normally pressured system and accumulate in structural or lithological traps. Therefore, commercial petroleum reservoirs could be potentially found in both the overpressured system, and in the normally pressured system.展开更多
Thermal evolution of source rocks and dynamic sealing evolution of cap rocks are both subjected to tectonic evolution.The marine sequences in South China have experienced superposed structural deformation from multipl...Thermal evolution of source rocks and dynamic sealing evolution of cap rocks are both subjected to tectonic evolution.The marine sequences in South China have experienced superposed structural deformation from multiple tectonic events.To investigate the effectiveness of preservation conditions,it is of great importance to understand the controls of key tectonic events on the dynamic evolution of cap rocks.This paper discusses the controls of Late Jurassic-Early Cretaceous(J3-K1) tectonic event on source and cap rocks in marine sequences in South China based on the relationships between J3-K1 tectonic event and the burial history types of the marine sequences,the hydrocarbon generation processes of marine source rocks,the sealing evolution of cap rocks,the preservation of hydrocarbon accumulations,and the destruction of paleo-oil pools.The study has the following findings.In the continuously subsiding and deeply buried areas during the J3-K1 period,marine source rocks had been generating hydrocarbons for over a long period of time and hydrocarbon generation ended relatively late.At the same time,the sealing capacity of the overburden cap rocks had been constantly strengthened so that hydrocarbons could be preserved.In the areas which suffered compressional deformation,folding and thrusting,uplifting and denudation in J3-K1,the burial history was characterized by an early uplifting and the hydrocarbon generation by marine source rocks ended(or suspended) during the J3-K1 period.The sealing capacity of the cap rocks was weakened or even vanished.Thus the conditions for preserving the hydrocarbon accumulations were destroyed.The continuously subsiding and deeply buried areas during the J3-K1 period are the strategic precincts of the petroleum exploration in marine sequences in South China.展开更多
文摘The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.
基金the support from the National Natural Science Foundation of China(No.21676183)State Key Laboratory of Chemical Engineering,Collaborative Innovation of Chemical Science and Engineering(Tianjin)。
文摘A two-stage mixed integer linear programming model(MILP)incorporating a novel method of stochastic scenario generation was proposed in order to optimize the economic performance of the synergistic combination of midstream and downstream petrochemical supply chain.The uncertainty nature of the problem intrigued the parameter estimation,which was conducted through discretizing the assumed probability distribution of the stochastic parameters.The modeling framework was adapted into a real-world scale of petrochemical enterprise and fed into optimization computations.Comparisons between the deterministic model and stochastic model were discussed,and the influences of the cost components on the overall profit were analyzed.The computational results demonstrated the rationality of using reasonable numbers of scenarios to approximate the stochastic optimization problem.
基金supported by the China National Science and Technology Major Project(Nos.2016ZX05024-002-003,2017ZX05032-001-004)the Foundation of Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education(China University of Geosciences),China(Nos.TPR-2022-11,TPR-2022-24)the Science and Technology Planning Project of Tangshan City,China(Nos.22130213H).
文摘Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical and basin modeling analysis,hydrocarbon generation capacity and process of the Paleocene E_(1)y,E_(1)l and E_(1)m formations were investigated.Results show that E_(1)y and E_(1)l mudstones are high-quality source rocks with Type Ⅱ kerogen,which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment.E_(1)m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with Type Ⅲ kerogen,whose organic matter was originated from terrestrial higher plants under oxidized environment.Controlled by burial and maturity histories,E_(1)y and E_(1)l source rocks experienced two hydrocarbon generation stages,which took place in the Late Paleocene and in the Middle to Late Eocene,respectively,and had high hydrocarbon generation capacity with cumulative hydrocarbon volume of 363 and 328 mg/g,respectively.E_(1)m source rock only had one hydrocarbon generation process in the Late Eocene,which had low hydrocarbon generation capacity with cumulative hydrocarbon volume of only 24 mg/g.The future oil-gas exploration in the Jiaojiang sag should focus on hydrocarbon generation center and select targets in the central uplift formed before the Miocene with high-quality traps.
文摘Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area.
文摘The enhancement of organic-matter maturation and petroleum generation by the migration and accumulation of active hydrothermal fluids in the high thermal-gradient, strongly overpressured environments in the Yinggehai and Qiongdongnan basins is systematically demonstrated by combination of geological, geochemical analysis and basin modeling. The retardation of organic-matter thermal evolution by abnormal pore-pressure is recognized, its manifestation and dynamic mechanism are illustrated, and chemical kinetic modeling of the pressure retardation is carried out. On this basis, the model of organic-matter thermal evolution and petroleum generation in high thermal-gradient, strongly overpressured environments is summarized. A correct understanding of the effects of active hydrothermal fluids and abnormal pore-fluid pressures on organic-matter thermal evolution is of great theoretical and practical significance for thermal history analysis, basin modeling and petroleum resource evaluation.
文摘Thermal maturation and petroleum generation modeling of shales is essential for suc- cessful exploration and exploitation of conventional and unconventional oil and gas plays. For basin- wide unconventional resource plays such modeling, when well calibrated with direct maturity meas- urements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A miscon- ception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite re- flectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (~TTIARa), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper dem- onstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ~TTIARR and "EasyRo" methods that this is not the case. The ~TTIA^R method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expres- sions the ~TTIAaa method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ~TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realisti- cally model observed kerogen behaviour and transformation factors over geologic time scales.
基金This study was fnancially supported by the China Postdoctoral Science Foundation(2019M660054)Science Foundation of China University of Petroleum(Beijing)(2462019BJRC005)+3 种基金Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-05)Natural Science Foundation of China(41872148,41872128)NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-02)the Science Projects of the Sinopec Zhongyuan Oilfeld Company(P15022).
文摘Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter contents composed of oil-prone type I and type II kerogens within the oil window.Various types of pores and fractures exist in the shale,with a porosity of up to 14.9%.The shale has high brittle mineral contents,extensive fractures,and high potential for oil mobility due to high seepage capacity and overpressure.Although the petroleum generation potential of the shale at Well PS18-8 is relatively greater than that at Well PS18-1,oil content of the latter is greater due to the greater TOC.The porosity and fracture density observed in Well PS18-1 are greater and more conducive to shale oil enrichment.Although the shales in Wells PS18-1 and PS18-8 have similar brittle mineral contents,the former is more favorable for anthropogenic fracturing due to a higher preexisting fracture density.Besides,the shale at Well PS18-1 has a higher seepage capacity and overpressure and therefore a higher oil mobility.The fracture density and overpressure play key roles in shale oil enrichment.
文摘Having undergone four basin forming tectonic cycles--Hercynian, Indosinian, Yanshanian, and Himalayan, the Junggar basin becomes a multi cyclic superposed basin of old and hard mediun block pattern. Its multi cyclic tectonic and sedimentary evolution results in five series of hydrocarbon source rock formations--Carboniferous, Permian, Upper Triassic, Middle lower Jurassic, and Lower Tertiary, correspondingly forming five petroleum generation systems, of which the Permian and Middle lower Jurassic petroleum generation systems are the most important with the highest exploration degree. Hydrocarbons are controlled by basin structure as follows: 1) Hydrocarbon accumulations are controlled by the structural styles of paleo uplifts, paleo overthrust belts and contorted anticline belts formed in multi cyclic tectonic movements; 2) Important pathways for long distance lateral and vertical migration are provided respectively by unconformities and faults; 3) The pool forming characteristics of the Permian petroleum system are controlled by paleo structure; 4) The pool forming characteristics of Jurassic and Tertiary petroleum system are controlled by recent structures.
基金the "973" Project(Grant No. 1999043308) and Creation Research Base of State Key Laboratory of Organic Geochemistry, the Chinese Academy of Sciences.
文摘On the basis of thermal maturation theories of organic matter in sediments and an improved Harweil’s method, a method for dating hydrocarbon generation and migration by means of bitumen reflectance has been suggested. A few representative boreholes in the Tazhong Area of the Tarim Basin was investigated by this method. The results indicate that the three phases of bitumen from the Tazhong Area formed during Middle and Late Ordovician, Late Cretaceous-Early Tertiary, and Late Tertiary, respectively. This implicates that there were three phases of hydrocarbon generation and migration occurring in this area during geological history. This study provided a new idea for the geological application of geochemical data of bitumen.
文摘Most of petroliferous sedimentary basins in China have experienced multiple phases of tectonic evolution and deposition, and are characterized by tectonic and depositional superimposition. The term "superimposed basin" is suggested to describe those basins which consist of two or more simple prototype basins superimposing vertically and/or coalescing later-ally. The characteristics of petroliferous superimposed basins are "multiple stages of basin forming and reworking, multiple layers of source rocks, multiple periods of hydrocarbon genera-tion and expulsion, multiple periods of petroleum migration-accumulation-escape". Therefore, applying the wave process analysis method to studying the process of basin formation, hydro-carbon generation, and reservoir formation, and then establishing theory of "petroleum accumu-lation system" is helpful to enhancing petroleum exploration efficiency in superimposed basins. This paper will, based on case study in the Tarim basin, report the major developments in studying basin formation, hydrocarbon generation and petroleum accumulation. In study of basin formation, (1) geophysical comprehensive profiles reveal that the Tarim plate has been sub-ducted beneath the Tianshan orogenic belt with an interfinger structure and that the deep struc-ture in the eastern section of the Tianshan orogenic belt is different from that in the western sec-tion. (2) The vertical variation in debris and geochemical composition reveals the nature and Mesozoic-Cenozoic evolution history of the Kuqa Depression. (3) Field investigation and paleo-stress reconstruction show that the Kuqa Depression has undergone gravity-driven extension in sedimentary cover when the Tianshan uplifted vertically. In hydrocarbon generation study, new developments include (1) setting environmental index to judge high grade source rocks in marine carbonates, and (2) establishing the lower limit of the organic carbon content for effective car-bonate source rocks. In petroleum accumulation study, (1) methods of determining paleopres-sure and paleotemperature of forming fluid inclusions have been established. (2) The petroleum source analysis has indicated that the erude oil in the Lunnan and Tahe oilfields are derived from the source rocks of the Middle and Upper Ordovician. (3) Three generations of oil inclusions from the Lunnan oilfield have been recognized and dated.
文摘The Junggar Basin is one of the largest and most petroliferous superimposed petroleum basins in China. The central depression area has become the frontier field for petroleum exploration. The characteristics of potential source rocks and reservoir sandstones, and the pressure regime in the central Junggar Basin were studied. Permian shales are dominated by hydrogen-rich, oil-prone algal organic matter, and Jurassic mudstones are dominated by hydrogen-poor, higher-plant derived organic matter. These source rocks are widespread and have been mature for hydrocarbon generation, suggesting good to excellent exploration potential, both for crude oils and for natural gases. The deeply buried Jurassic sandstones usually have low porosity and permeability. However, sandstones beneath the Jurassic/Cretaceous unconformity display relatively high porosity and permeability, suggesting that meteoric water leaching had improved the quality of the sandstones. Overpressure developed over much of the central Junggar Basin. The overpressured rocks are characterized by slightly increased interval transit time, low sandstone permeability, increased organic matter maturity, and high relative hydrocarbon-gas contents. Mudstones in the overpressured system have quite the same clay mineral compositions as mudstones in the lower part of the normally pressured system. Overpressure generation in the central Junggar Basin is best to be explained as the result of hydrocarbon generation and fluid retention in low-permeability rocks. Petroleum generated from Permian and Jurassic source rocks could migrate laterally through preferential petroleum migration pathways and accumulated in structural traps or lithological traps in the overpressured system, or migrate vertically through faults/ hydraulic fractures into the overlying, normally pressured system and accumulate in structural or lithological traps. Therefore, commercial petroleum reservoirs could be potentially found in both the overpressured system, and in the normally pressured system.
基金supported by NationalNatural Science Foundation of China (Grant No. 40974048)National Basic Research Program of China (Grant No. 2005CB422108)National Science & Technology Special Project (Grant No. 2008ZX05005)
文摘Thermal evolution of source rocks and dynamic sealing evolution of cap rocks are both subjected to tectonic evolution.The marine sequences in South China have experienced superposed structural deformation from multiple tectonic events.To investigate the effectiveness of preservation conditions,it is of great importance to understand the controls of key tectonic events on the dynamic evolution of cap rocks.This paper discusses the controls of Late Jurassic-Early Cretaceous(J3-K1) tectonic event on source and cap rocks in marine sequences in South China based on the relationships between J3-K1 tectonic event and the burial history types of the marine sequences,the hydrocarbon generation processes of marine source rocks,the sealing evolution of cap rocks,the preservation of hydrocarbon accumulations,and the destruction of paleo-oil pools.The study has the following findings.In the continuously subsiding and deeply buried areas during the J3-K1 period,marine source rocks had been generating hydrocarbons for over a long period of time and hydrocarbon generation ended relatively late.At the same time,the sealing capacity of the overburden cap rocks had been constantly strengthened so that hydrocarbons could be preserved.In the areas which suffered compressional deformation,folding and thrusting,uplifting and denudation in J3-K1,the burial history was characterized by an early uplifting and the hydrocarbon generation by marine source rocks ended(or suspended) during the J3-K1 period.The sealing capacity of the cap rocks was weakened or even vanished.Thus the conditions for preserving the hydrocarbon accumulations were destroyed.The continuously subsiding and deeply buried areas during the J3-K1 period are the strategic precincts of the petroleum exploration in marine sequences in South China.