There are three formation stages of Silurian hydrocarbon pools in the Tarim Basin. The widely distributed asphaltic sandstones in the Tazhong (central Tarim) and Tabei (northern Tarim) areas are the results of des...There are three formation stages of Silurian hydrocarbon pools in the Tarim Basin. The widely distributed asphaltic sandstones in the Tazhong (central Tarim) and Tabei (northern Tarim) areas are the results of destruction of hydrocarbon pools formed in the first-stage, and the asphaltic sandstones around the Awati Sag were formed in the second-stage. The hydrocarbon migration characteristics reflected by the residual dry asphalts could represent the migration characteristics of hydrocarbons in the Silurian paleo-pools, while the present movable oil in the Silurian reservoirs is related to the iater-stage (the third-stage) hydrocarbon accumulation.展开更多
According to the theory of petroleum system and the characteristics of petroleum geology, the Xihu depression in the East China Sea shelf basin is divided into four petroleum systems: the Pinghu Formation as source ro...According to the theory of petroleum system and the characteristics of petroleum geology, the Xihu depression in the East China Sea shelf basin is divided into four petroleum systems: the Pinghu Formation as source rock and the Huagang Formation as reservoir rock, the Huagang Formation as source rock and reservoir rock, the Paleocene as source rock and the burial-hill as reservoir rock, and the Miocene as source rock and reservoir rock. The system with the Pinghu Formation as source rock and the Huagang Formation as reservoir rock is the most important one in the depression, which has high hydrocarbon generation and accumulation efficiency and is the most important object to hydrocarbon exploration at present.展开更多
Having multiple tectonic evolution stages, South China belongs to a superimposed basin in nature. Most marine gas pools became secondary pools. The pool fluid sources serve as the principal pool-controlling factors. O...Having multiple tectonic evolution stages, South China belongs to a superimposed basin in nature. Most marine gas pools became secondary pools. The pool fluid sources serve as the principal pool-controlling factors. On the basis of eight typical petroleum pools, the type, evolution in time-space, and the controlling of petroleum distribution of pool fluid sources are comprehensively analyzed. The main types of pool fluid sources include hydrocarbon, generated primarily and secondly from source rocks, gas cracked from crude oil, gas dissolved in water, inorganic gas, and mixed gases. In terms of evolution, the primary hydrocarbon was predominant prior to Indosinian; during Indosinian to Yenshanian the secondary gas includes gas cracked from crude oil, gas generated secondarily, gas dissolved in water, and inorganic gas dominated; during Yenshanian to Himalayan the most fluid sources were mixed gases. Controlled by pool fluid sources, the pools with mixed gas sources distributed mainly in Upper Yangtze block, especially Sichuan (四川) basin; the pools with primary hydrocarbon sources distributed in paleo-uplifts such as Jiangnan (江南), but most of these pools became fossil pools; the pools with secondary hydrocarbon source distributed in the areas covered by Cretaceous and Eogene in Middle-Lower Yangtze blocks, and Chuxiong (楚雄), Shiwandashan (十万大山), and Nanpanjiang (南盘江) basins; the pools with inorganic gas source mainly formed and distributed in tensional structure areas.展开更多
文摘There are three formation stages of Silurian hydrocarbon pools in the Tarim Basin. The widely distributed asphaltic sandstones in the Tazhong (central Tarim) and Tabei (northern Tarim) areas are the results of destruction of hydrocarbon pools formed in the first-stage, and the asphaltic sandstones around the Awati Sag were formed in the second-stage. The hydrocarbon migration characteristics reflected by the residual dry asphalts could represent the migration characteristics of hydrocarbons in the Silurian paleo-pools, while the present movable oil in the Silurian reservoirs is related to the iater-stage (the third-stage) hydrocarbon accumulation.
基金This paper is supported by the National Natural Science Foundation of China (No. 40172051) the Foundation for University Ke
文摘According to the theory of petroleum system and the characteristics of petroleum geology, the Xihu depression in the East China Sea shelf basin is divided into four petroleum systems: the Pinghu Formation as source rock and the Huagang Formation as reservoir rock, the Huagang Formation as source rock and reservoir rock, the Paleocene as source rock and the burial-hill as reservoir rock, and the Miocene as source rock and reservoir rock. The system with the Pinghu Formation as source rock and the Huagang Formation as reservoir rock is the most important one in the depression, which has high hydrocarbon generation and accumulation efficiency and is the most important object to hydrocarbon exploration at present.
基金This paper is supported by SINOPEC Project (G0800-06-ZS- 319)
文摘Having multiple tectonic evolution stages, South China belongs to a superimposed basin in nature. Most marine gas pools became secondary pools. The pool fluid sources serve as the principal pool-controlling factors. On the basis of eight typical petroleum pools, the type, evolution in time-space, and the controlling of petroleum distribution of pool fluid sources are comprehensively analyzed. The main types of pool fluid sources include hydrocarbon, generated primarily and secondly from source rocks, gas cracked from crude oil, gas dissolved in water, inorganic gas, and mixed gases. In terms of evolution, the primary hydrocarbon was predominant prior to Indosinian; during Indosinian to Yenshanian the secondary gas includes gas cracked from crude oil, gas generated secondarily, gas dissolved in water, and inorganic gas dominated; during Yenshanian to Himalayan the most fluid sources were mixed gases. Controlled by pool fluid sources, the pools with mixed gas sources distributed mainly in Upper Yangtze block, especially Sichuan (四川) basin; the pools with primary hydrocarbon sources distributed in paleo-uplifts such as Jiangnan (江南), but most of these pools became fossil pools; the pools with secondary hydrocarbon source distributed in the areas covered by Cretaceous and Eogene in Middle-Lower Yangtze blocks, and Chuxiong (楚雄), Shiwandashan (十万大山), and Nanpanjiang (南盘江) basins; the pools with inorganic gas source mainly formed and distributed in tensional structure areas.