期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Efficient ozonation of reverse osmosis concentrates from petroleum refinery wastewater using composite metal oxideloaded alumina 被引量:2
1
作者 Yu Chen Chun-Mao Chen +5 位作者 Brandon A.Yoza Qing X.Li Shao-Hui Guo Ping Wang Shi-Jie Dong Qing-Hong Wang 《Petroleum Science》 SCIE CAS CSCD 2017年第3期605-615,共11页
Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Hi... Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters. 展开更多
关键词 petroleum refinery wastewater Reverseosmosis concentrate Catalytic ozonation Compositemetal oxide
下载PDF
Rapid aerobic granulation using biochar for the treatment of petroleum refinery wastewater
2
作者 Xin Wang Jie Ming +5 位作者 Chun-Mao Chen Brandon A.Yoza Qian-Wei Li Jia-Hao Liang Geoffrey Michael Gadd Qing-Hong Wang 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1411-1421,共11页
Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In ... Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In this work,biochar was prepared from waste petroleum activated sludge(biochar-WPS) and used in a sequencing batch reactor for the treatment of petroleum refinery wastewater.Biochar-WPS presented the surface area of 229.77 m2/g,pore volume of 0.28 cm3/g,H/C and O/C atomic ratios of 0.42 and 0.21,respectively.The porous structure and a high degree of hydrophilicity were found to facilitate microbial colonization and adhesion as well as particle aggregation.Application of biochar-WPS resulted in the formation of more substantial and stable aerobic granules(~66% of granules> 0.46 mm diameter) 15 days earlier compared with the control.The addition of biochar-WPS enhanced the average removal efficiency of chemical organic demand(~3%),oil(~4%)and total nitrogen(~10%) over the control.Increased microbial richness and diversity were observed within the formed granules and had an increased(~4%) proportion of denitrifying bacteria.These results indicate that an aerobic granulation mechanism using biochar-WPS is a feasible option for the treatment of petroleum refinery wastewater. 展开更多
关键词 BIOCHAR petroleum refinery wastewater petroleum activated sludge Granular sludge Denitrifying bacteria
下载PDF
A comprehensive evaluation of re-circulated bio-filter as a pretreatment process for petroleum refinery wastewater
3
作者 Xiaoli Dai Chunmao then +2 位作者 Guangxu Yan Yu Chen Shaohui Guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第12期49-55,共7页
Conventional biological treatment process is not very efficient for the treatment of petroleum refinery wastewater (PRW) that contains high-concentration of organic contaminants. Prior to biological treatment, an ad... Conventional biological treatment process is not very efficient for the treatment of petroleum refinery wastewater (PRW) that contains high-concentration of organic contaminants. Prior to biological treatment, an additional pretreatment process for PRW is required for the effluent to meet the discharge standards. While re-circulated bio-filter (RBF) has been applied as a pretreatment process in several PRW treatment plants, its effects have not been comprehen- sively evaluated. In this study, the parameters of operation, the changes in pollution indexes and contaminant composition in an engineered RBF have been investigated. We found that mainly highly active de-carbonization bacteria were present in the RBF, while no nitrification bacteria were found in the RBF. This indicated the absence of nitrification in this process. The biodegradable organic contaminants were susceptible to degradation by RBF, which decreased the Biological Oxygen Demand (BODs) by 83.64% and the Chemical Oxygen Demand (CODcr) by 54.63%. Consequently, the alkalinity and pH value of RBF effluent significantly increased, which was unfavorable for the control of operating parameters in subsequent biological treatment. Along with the decrease of CODcr, the RBF effluent exhibited a reduction in biodegradability. 834 kinds of recalcitrant polar organic contaminants remained in the effluent; most of the contaminant molecules having complex structures of aromatic, polycyclic and heterocyclic rings. The results of this study showed that RBF could efficiently treat PRW for biodegradable organic contaminants removal; however, it is difficult to treat bio-refractory organic contaminants, which was unfavorable for the subsequent biological treatment process operation. An improved process might provide overall guarantees for the PRW treatment. 展开更多
关键词 petroleum refinery wastewater Re-circulated bio-filter Pretreatment Comprehensive evaluation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部