Holographic thermalization for a black hole surrounded by phantom dark energy is probed. The result shows that the smaller the phantom dark energy parameter is, the easier the is plasma to thermalize as the chemical p...Holographic thermalization for a black hole surrounded by phantom dark energy is probed. The result shows that the smaller the phantom dark energy parameter is, the easier the is plasma to thermalize as the chemical potential is fixed, the larger the chemical potential is, and the harder the plasma is to thermalize as the dark energy parameter is fixed. The thermalization velocity and thermalization acceleration are presented by fitting the thermalization curves.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405016 and 11365008the China Postdoctoral Science Foundation under Grant No 2016M590138
文摘Holographic thermalization for a black hole surrounded by phantom dark energy is probed. The result shows that the smaller the phantom dark energy parameter is, the easier the is plasma to thermalize as the chemical potential is fixed, the larger the chemical potential is, and the harder the plasma is to thermalize as the dark energy parameter is fixed. The thermalization velocity and thermalization acceleration are presented by fitting the thermalization curves.