The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conv...The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.展开更多
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic...Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.展开更多
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data...After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).展开更多
Different pattern structures are obtained on the AglnSbTe (AIST) phase change film as induced by laser beam. Atomic force microscopy (AFM) was used to observe and analyze the different pattern structures. The AFM ...Different pattern structures are obtained on the AglnSbTe (AIST) phase change film as induced by laser beam. Atomic force microscopy (AFM) was used to observe and analyze the different pattern structures. The AFM photos clearly show the gradually changing process of pattern structures induced by different threshold effects, such as crystallization threshold, microbump threshold, melting threshold, and ablation threshold. The analysis indicates that the AIST material is very effective in the fabrication of pattern structures and can offer relevant guidance for application of the material in the future.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.62074089)the Natural Science Foundation of Ningbo City,China(Grant No.2022J072)+1 种基金the Youth Science and Technology Innovation Leading Talent Project of Ningbo City,China(Grant No.2023QL005)sponsored by the K.C.Wong Magna Fund in Ningbo University。
文摘The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge_2Sb_2Te_5(GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.
基金supported by the Project of Shanghai Science and Technology Commission (Grant No. 19DZ1203102)National Key Research and Development Project (2018YFD0401300)Shanghai Municipal Science and Technology Project (16040501600)。
文摘Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Changzhou Science and Technology Bureau under Grant No CJ20160028the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences
文摘After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).
基金supported by the National Natural Science Foundation of China(Nos.50772120, 60977004,and 11054001)the Shanghai Rising Star Tracking Program(No.10QH1402700)the Basic Research Program of China(No.2007CB935400)
文摘Different pattern structures are obtained on the AglnSbTe (AIST) phase change film as induced by laser beam. Atomic force microscopy (AFM) was used to observe and analyze the different pattern structures. The AFM photos clearly show the gradually changing process of pattern structures induced by different threshold effects, such as crystallization threshold, microbump threshold, melting threshold, and ablation threshold. The analysis indicates that the AIST material is very effective in the fabrication of pattern structures and can offer relevant guidance for application of the material in the future.