This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous pha...This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase. The film holds a threshold current about 0.155 mA, which is smaller than the value 0.31 mA of Ge2Sb2Te5 film. Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at ~ 180℃ and changes to hexagonal structure at ~ 270℃. Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method. Data retention of the films was characterized as well.展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing...Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization,these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.展开更多
The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed...The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact(BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation.This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.展开更多
The uniformity of threshold voltage and threshold current in the In2 Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap d...The uniformity of threshold voltage and threshold current in the In2 Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.展开更多
In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase chan...In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase change material. After high temperature process, voids of phase change material exist at the interface between Ge2Sb2Te5 and substrate in the initial open memory cell. This lower region of GezSb2Te5 is found to be a Te-rich phase change layer. Phase change memory devices are fabricated in different process conditions and examined by scanning electron microscopy and energy dispersive X-ray. It is found that hot-chuck process, nitrogen-doping process, and lower temperature inter-metal dielectric (IMD) deposition process can ease the thermal impact of line-GST PRAM cell.展开更多
A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to ...A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to predict crystallization behaviour that is linked to thermal and electrical simulations to enable the study of the data writing and erasing processes. The CA approach is shown to be able to predict the evolution of the microstructure during the rapid heating and cooling cycles pertinent to data storage technology, and maps crystallization behaviour on the nanoscale. A simple example based on possible future nonvolatile phase-change random access solid-state memory is presented.展开更多
The relaxation oscillation of the phase change memory (PCM) devices based on the Ge2Sb2Te5 material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately...The relaxation oscillation of the phase change memory (PCM) devices based on the Ge2Sb2Te5 material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately given by the independently designed current testing system. The relaxation oscillation across the PCM device could be measured using an oscilloscope. The oscillation duration decreases with time, showing an inner link with the shrinking threshold voltage Vth. However, the relaxation oscillation would not terminate until the remaining voltage Von reaches the holding voltage Vh. This demonstrates that the relaxation oscillation might be controlled by Von. The increasing current amplitudes could only quicken the oscillation velocity but not be able to eliminate it, which indicates that the relaxation oscillation might be an inherent behavior for the PCM cell.展开更多
Phase change memory(PCM)attracts wide attention for the memory-centric computing and neuromorphic comput-ing.For circuit and system designs,PCM compact models are mandatory and their status are reviewed in this work.M...Phase change memory(PCM)attracts wide attention for the memory-centric computing and neuromorphic comput-ing.For circuit and system designs,PCM compact models are mandatory and their status are reviewed in this work.Macro mod-els and physics-based models have been proposed in different stages of the PCM technology developments.Compact model-ing of PCM is indeed more complex than the transistor modeling due to their multi-physics nature including electrical,thermal and phase transition dynamics as well as their interactions.Realizations of the PCM operations including threshold switching,set and reset programming in these models are diverse,which also differs from the perspective of circuit simulations.For the purpose of efficient and reliable designs of the PCM technology,open issues and challenges of the compact modeling are also discussed.展开更多
After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data...After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).展开更多
A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by d...A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1 - I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1 - I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1 - I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.展开更多
The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin f...The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.展开更多
Phase-change line memory cells with different line widths are fabricated using focused-ion-beam deposited C-Pt as a hard mask. The electrical performance of these memory devices was characterized. The current^oltage ...Phase-change line memory cells with different line widths are fabricated using focused-ion-beam deposited C-Pt as a hard mask. The electrical performance of these memory devices was characterized. The current^oltage (I-V) and resistance-voltage (RV) characteristics demonstrate that the power consumption decreases with the width of the phase-change line. A three-dimensional simulation is carried out to further study the scaling properties of the phase- change line memory. The results show that the resistive amorphous (RESET) power consumption is proportional to the cross-sectional area of the phase-change line, but increases as the line length decreases.展开更多
This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made...Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.展开更多
The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, so...The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, sodium thiosulphate pentahydrate is employed as phase change material and it is stored in stainless steel capsules. These capsules are kept in fabricated tank and hot water is supplied into it. The experimental design is prepared by considering the parameters: flow rate, heat transfer fluid inlet temperature and PCM capsule shape. Experiments are conducted according to the experimental design and responses are recorded. The effect of selected parameters on TES using PCM is studied by analyzing experimental data. The experimental data are also analyzed using Fuzzy Logic to find the optimal values of flow rate, heat transfer fluid inlet temperature and PCM capsule shapes. The present work utilizes Fuzzy Logic to find the optimal parameters for designing the effective Thermal Energy Storage System (TES).展开更多
The Green's function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage....The Green's function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage. The thickness of the solid PCM on the fin varies with time and is obtained by the Megerlin method. The models are found with the Bessel equation to form an analytical solution. Three different kinds of boundary conditions are investigated. The comparison between analytical and numerical solutions is given. The results demonstrate that the significant accuracy is obtained for the temperature distribution for the fin in all cases.展开更多
Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can b...Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can be reduced by storing heat transmitted in phase change materials (PCM) as latent heat, in order to ensure a good situation of thermal comfort during all months of the year. In this work, thermal behavior of two roofing systems is studied. One roof is constituted only by usual materials in building. In the other, two phase change materials (PCM) are introduced according to three configurations. Study is interested to assess incorporation effect of two PCMs within the roof and to evaluate the optimum locations to reduce the energy consumption of air-conditioned room. Mono-dimensional numerical model validated analytically and experimentally, is used to carry out a parametric analyzes to determine characteristics of the layers in which the roofs are formed regardless of external climate effect. Numerical calculations are performed for three configurations of roof. Results show that insertion of phase change materials in roof provides best energy consumption saving regardless annual climate change. Generally, the three configurations lead to different results, depending on the combination of PCMs. This difference becomes less important when selection of PCMs take account the thermal comfort level and temperatures of hottest and coldest periods.展开更多
A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorb...A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorbing solar heat, heat from co-generation and heat pumps or electric heat from excess wind and solar power. The storage system is equipped with a plate heat exchanger that is so powerful that even with small temperature differences between the flow temperature and the storage temperature a high load dynamic is achieved. The storage system has a performance of 2.8 kW at 4 K and 10.6 kW at a temperature difference of 10 K. Thus, large performance variations in solar thermal systems or CHP plants can be buffered very well. Further a storage charge function Q(T, t) will be presented to characterize the performance of the storage.展开更多
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t...Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.展开更多
文摘This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory. Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase. The film holds a threshold current about 0.155 mA, which is smaller than the value 0.31 mA of Ge2Sb2Te5 film. Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at ~ 180℃ and changes to hexagonal structure at ~ 270℃. Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method. Data retention of the films was characterized as well.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61922035 and 11904118)
文摘Recent years, optically controlled phase-change memory draws intensive attention owing to some advanced applications including integrated all-optical nonvolatile memory, in-memory computing, and neuromorphic computing. The light-induced phase transition is the key for this technology. Traditional understanding on the role of light is the heating effect. Generally, the RESET operation of phase-change memory is believed to be a melt-quenching-amorphization process. However, some recent experimental and theoretical investigations have revealed that ultrafast laser can manipulate the structures of phase-change materials by non-thermal effects and induces unconventional phase transitions including solid-to-solid amorphization and order-to-order phase transitions. Compared with the conventional thermal amorphization,these transitions have potential superiors such as faster speed, better endurance, and low power consumption. This article summarizes some recent progress of experimental observations and theoretical analyses on these unconventional phase transitions. The discussions mainly focus on the physical mechanism at atomic scale to provide guidance to control the phase transitions for optical storage. Outlook on some possible applications of the non-thermal phase transition is also presented to develop new types of devices.
基金support of the"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA09020402)the National Integrate Circuit Research Program of China(No.2009ZX02023-003)+2 种基金the National Natural Science Foundation of China(Nos.61261160500,61376006,61401444,61504157)the Science and Technology Council of Shanghai(Nos.14DZ2294900,15DZ2270900,14ZR1447500)the National Natural Science Foundation of China(61874178)
文摘The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact(BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation.This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00604)
文摘The uniformity of threshold voltage and threshold current in the In2 Se3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB934300,2011CBA00607,and 2011CB9328004)the National Integrate Circuit Research Program of China(Grant No.2009ZX02023-003)+1 种基金the National Natural Science Foundation of China(Grant Nos.60906004,60906003,61006087,61076121,61176122,and 61106001)the Funds from the Science and Technology Council of Shanghai,China(Grant No.12nm0503701)
文摘In the fabrication of phase change random access memory (PRAM) devices, high temperature thermal processes are inevitable. We investigate the thermal stability of GezSb2Te5 (GST) which is a prototypical phase change material. After high temperature process, voids of phase change material exist at the interface between Ge2Sb2Te5 and substrate in the initial open memory cell. This lower region of GezSb2Te5 is found to be a Te-rich phase change layer. Phase change memory devices are fabricated in different process conditions and examined by scanning electron microscopy and energy dispersive X-ray. It is found that hot-chuck process, nitrogen-doping process, and lower temperature inter-metal dielectric (IMD) deposition process can ease the thermal impact of line-GST PRAM cell.
基金The authors acknowledge the support of the EU Framework 5 programme in supporting this work un-der the auspices of the PC-RAM project (IST-2001-32557).
文摘A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to predict crystallization behaviour that is linked to thermal and electrical simulations to enable the study of the data writing and erasing processes. The CA approach is shown to be able to predict the evolution of the microstructure during the rapid heating and cooling cycles pertinent to data storage technology, and maps crystallization behaviour on the nanoscale. A simple example based on possible future nonvolatile phase-change random access solid-state memory is presented.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA09020402the National Key Basic Research Program of China under Grant Nos 2013CBA01900,2010CB934300,2011CBA00607 and 2011CB932804+2 种基金the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003the National Natural Science Foundation of China under Grant Nos 61176122,61106001,61261160500 and 61376006the Science and Technology Council of Shanghai under Grant Nos 12nm0503701,13DZ2295700,12QA1403900,13ZR1447200 and 14ZR1447500
文摘The relaxation oscillation of the phase change memory (PCM) devices based on the Ge2Sb2Te5 material is investigated by applying square current pulses. The current pulses with different amplitudes could be accurately given by the independently designed current testing system. The relaxation oscillation across the PCM device could be measured using an oscilloscope. The oscillation duration decreases with time, showing an inner link with the shrinking threshold voltage Vth. However, the relaxation oscillation would not terminate until the remaining voltage Von reaches the holding voltage Vh. This demonstrates that the relaxation oscillation might be controlled by Von. The increasing current amplitudes could only quicken the oscillation velocity but not be able to eliminate it, which indicates that the relaxation oscillation might be an inherent behavior for the PCM cell.
基金supported in part by the National Natural Science Foundation of China(62074006,91964204)in part by the Major Scientific Instruments and Equipment Development(61927901)+4 种基金the Shenzhen Science and Technology Project(GXWD20201231165807007-20200827114656001)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44010200)Science and Technology Council of Shanghai(19JC1416801)the Shanghai Research and Innovation Functional Program(17DZ2260900)in part by the 111 Project(B18001)。
文摘Phase change memory(PCM)attracts wide attention for the memory-centric computing and neuromorphic comput-ing.For circuit and system designs,PCM compact models are mandatory and their status are reviewed in this work.Macro mod-els and physics-based models have been proposed in different stages of the PCM technology developments.Compact model-ing of PCM is indeed more complex than the transistor modeling due to their multi-physics nature including electrical,thermal and phase transition dynamics as well as their interactions.Realizations of the PCM operations including threshold switching,set and reset programming in these models are diverse,which also differs from the perspective of circuit simulations.For the purpose of efficient and reliable designs of the PCM technology,open issues and challenges of the compact modeling are also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Changzhou Science and Technology Bureau under Grant No CJ20160028the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences
文摘After compositing with SiO_2 layers, it is shown that superlattice-like Sb/SiO_2 thin films have higher crystallization temperature(~240°C), larger crystallization activation energy(6.22 e V), and better data retention ability(189°C for 10 y). The crystallization of Sb in superlattice-like Sb/SiO_2 thin films is restrained by the multilayer interfaces. The reversible resistance transition can be achieved by an electric pulse as short as 8 ns for the Sb(3 nm)/SiO_2(7 nm)-based phase change memory cell. A lower operation power consumption of 0.09 m W and a good endurance of 3.0 × 10~6 cycles are achieved. In addition, the superlattice-like Sb(3 nm)/SiO_2(7 nm) thin film shows a low thermal conductivity of 0.13 W/(m·K).
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA09020402the National Key Basic Research Program of China under Grant Nos 2013CBA01900,2010CB934300,2011CBA00607,and 2011CB932804+2 种基金the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003the National Natural Science Foundation of China under Grant Nos 61176122,61106001,61261160500,and 61376006the Science and Technology Council of Shanghai under Grant Nos 12nm0503701,13DZ2295700,12QA1403900,and 13ZR1447200
文摘A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1 - I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1 - I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1 - I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Chinese Academy of Sciencesthe Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No SJCX18_1024
文摘The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.
基金Project supported by the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)the National Key Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00602, and 2011CB932800)+1 种基金the National Natural Science Foundation of China (Grant Nos. 60906003, 60906004, 61006087, and 61076121)the Science and Technology Council of Shanghai of China (Grant No. 1052nm07000)
文摘Phase-change line memory cells with different line widths are fabricated using focused-ion-beam deposited C-Pt as a hard mask. The electrical performance of these memory devices was characterized. The current^oltage (I-V) and resistance-voltage (RV) characteristics demonstrate that the power consumption decreases with the width of the phase-change line. A three-dimensional simulation is carried out to further study the scaling properties of the phase- change line memory. The results show that the resistive amorphous (RESET) power consumption is proportional to the cross-sectional area of the phase-change line, but increases as the line length decreases.
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
文摘Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.
文摘The usage of phase change materials (PCM) to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation, sodium thiosulphate pentahydrate is employed as phase change material and it is stored in stainless steel capsules. These capsules are kept in fabricated tank and hot water is supplied into it. The experimental design is prepared by considering the parameters: flow rate, heat transfer fluid inlet temperature and PCM capsule shape. Experiments are conducted according to the experimental design and responses are recorded. The effect of selected parameters on TES using PCM is studied by analyzing experimental data. The experimental data are also analyzed using Fuzzy Logic to find the optimal values of flow rate, heat transfer fluid inlet temperature and PCM capsule shapes. The present work utilizes Fuzzy Logic to find the optimal parameters for designing the effective Thermal Energy Storage System (TES).
文摘The Green's function method is applied for the transient temperature of an annular fin when a phase change material (PCM) solidifies on it. The solidification of the PCMs takes place in a cylindrical shell storage. The thickness of the solid PCM on the fin varies with time and is obtained by the Megerlin method. The models are found with the Bessel equation to form an analytical solution. Three different kinds of boundary conditions are investigated. The comparison between analytical and numerical solutions is given. The results demonstrate that the significant accuracy is obtained for the temperature distribution for the fin in all cases.
文摘Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can be reduced by storing heat transmitted in phase change materials (PCM) as latent heat, in order to ensure a good situation of thermal comfort during all months of the year. In this work, thermal behavior of two roofing systems is studied. One roof is constituted only by usual materials in building. In the other, two phase change materials (PCM) are introduced according to three configurations. Study is interested to assess incorporation effect of two PCMs within the roof and to evaluate the optimum locations to reduce the energy consumption of air-conditioned room. Mono-dimensional numerical model validated analytically and experimentally, is used to carry out a parametric analyzes to determine characteristics of the layers in which the roofs are formed regardless of external climate effect. Numerical calculations are performed for three configurations of roof. Results show that insertion of phase change materials in roof provides best energy consumption saving regardless annual climate change. Generally, the three configurations lead to different results, depending on the combination of PCMs. This difference becomes less important when selection of PCMs take account the thermal comfort level and temperatures of hottest and coldest periods.
文摘A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorbing solar heat, heat from co-generation and heat pumps or electric heat from excess wind and solar power. The storage system is equipped with a plate heat exchanger that is so powerful that even with small temperature differences between the flow temperature and the storage temperature a high load dynamic is achieved. The storage system has a performance of 2.8 kW at 4 K and 10.6 kW at a temperature difference of 10 K. Thus, large performance variations in solar thermal systems or CHP plants can be buffered very well. Further a storage charge function Q(T, t) will be presented to characterize the performance of the storage.
基金Funded by the National Key Technologies Research and Development Program of China(No.2006BAJ04A16)
文摘Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.