This paper detects and characterizes the diverse roles played by bounded noise in chaotic phase synchronization (CPS) of weakly coupled nonlinear stochastic systems. Analysis of a paradigmatic model of two bidirecti...This paper detects and characterizes the diverse roles played by bounded noise in chaotic phase synchronization (CPS) of weakly coupled nonlinear stochastic systems. Analysis of a paradigmatic model of two bidirectional coupled three-level food chains is carried out by various statistical measures such as Shannon entropy and mutual information. The results indicate that inside the synchronous regime, CPS is considerably reduced under the influence of bounded noise; near the onset of phase synchronization, temporal phase locking is diversely changed with the increase of noise, i.e., either weak or strong noise also degrades the degree of CPS, while intermediate noise enhances CPS remarkably, and an optimal noise intensity is detected that maximizes the enhancement.展开更多
Complex networks have been extensively investigated in recent years.However,the dynamics,especially chaos and bifurcation,of the complex-valued complex network are rarely studied.In this paper,a star network of couple...Complex networks have been extensively investigated in recent years.However,the dynamics,especially chaos and bifurcation,of the complex-valued complex network are rarely studied.In this paper,a star network of coupled complex-valued van der Pol oscillators is proposed to reveal the mechanism of star coupling.By the aid of bifurcation diagram,Lyapunov exponent spectrum and phase portrait in this study,chaos,hyper-chaos,and multi-existing chaotic attractors are observed from the star network,although there are only periodic states in a complex-valued van der Pol oscillator.Complexity versus coupling strength and nonlinear coefficient shows that the bigger the network size,the larger the parameter range within the chaotic(hyper-chaotic)region.It is revealed that the chaotic bifurcation path is highly robust against the size variation of the star network,and it always evolves to chaos directly from period-1 and quasi-periodic states,respectively.Moreover,the coexistence of chaotic phase synchronization and complete synchronization among the peripherals is also found from the star network,which is a symmetrybreaking phenomenon.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10726042)Youth Science Foundation of Shanxi Normal University
文摘This paper detects and characterizes the diverse roles played by bounded noise in chaotic phase synchronization (CPS) of weakly coupled nonlinear stochastic systems. Analysis of a paradigmatic model of two bidirectional coupled three-level food chains is carried out by various statistical measures such as Shannon entropy and mutual information. The results indicate that inside the synchronous regime, CPS is considerably reduced under the influence of bounded noise; near the onset of phase synchronization, temporal phase locking is diversely changed with the increase of noise, i.e., either weak or strong noise also degrades the degree of CPS, while intermediate noise enhances CPS remarkably, and an optimal noise intensity is detected that maximizes the enhancement.
基金the National Natural Science Foundation of China(Grant No.61773010)。
文摘Complex networks have been extensively investigated in recent years.However,the dynamics,especially chaos and bifurcation,of the complex-valued complex network are rarely studied.In this paper,a star network of coupled complex-valued van der Pol oscillators is proposed to reveal the mechanism of star coupling.By the aid of bifurcation diagram,Lyapunov exponent spectrum and phase portrait in this study,chaos,hyper-chaos,and multi-existing chaotic attractors are observed from the star network,although there are only periodic states in a complex-valued van der Pol oscillator.Complexity versus coupling strength and nonlinear coefficient shows that the bigger the network size,the larger the parameter range within the chaotic(hyper-chaotic)region.It is revealed that the chaotic bifurcation path is highly robust against the size variation of the star network,and it always evolves to chaos directly from period-1 and quasi-periodic states,respectively.Moreover,the coexistence of chaotic phase synchronization and complete synchronization among the peripherals is also found from the star network,which is a symmetrybreaking phenomenon.