期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic Vapor Phase Epitaxy with the Hydride Vapor Phase Epitaxy
1
作者 姜腾 许晟瑞 +3 位作者 张进成 林志宇 蒋仁渊 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期173-176,共4页
Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of... Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence. 展开更多
关键词 MOVPE GAN Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic Vapor phase Epitaxy with the Hydride Vapor phase Epitaxy
下载PDF
Land deformation monitoring in mining area with PPP-AR 被引量:5
2
作者 Hu Hong Gao Jingxiang Yao Yifei 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期207-212,共6页
The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phas... The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring. 展开更多
关键词 Deformation monitoring precise point positioning Ambiguity combination phase delay (CPD) Ionosphere-free combination
下载PDF
Spatial diversity and combination technology using amplitude and phase weighting method for phase-coherent underwater acoustic communications 被引量:2
3
作者 LI Jilong HUANG Minyan +2 位作者 CHENG Shuping TAN Qianlin FENG Haihong 《Chinese Journal of Acoustics》 CSCD 2018年第1期45-59,共15页
The UWA channel is characterized as a time-dispersive rapidly fading channel, which in addition exhibits Doppler instabilities and limited bandwidth. To eliminate inter- symbol interference caused by multipath propaga... The UWA channel is characterized as a time-dispersive rapidly fading channel, which in addition exhibits Doppler instabilities and limited bandwidth. To eliminate inter- symbol interference caused by multipath propagation, spatial diversity equalization is the main technical means. The paper combines the passive phase conjugation and spatial processing to maximize the output array gain. It uses signal-to-noise-plus-interference to evaluate the quality of signals received at different channels. The amplitude of signal is weighted using Sigmoid function. Second order PLL can trace the phase variation caused by channel, so the signal can be accumulated in the same phase. The signals received at different channels need to be normal- ized. It adopts fractional-decision feedback diversity equalizer (FDFDE) and achieves diversity equalization by using different channel weighted coefficients. The simulation and lake trial data processing results show that, the optimized diversity receiving equalization algorithm can im- prove communication system's ability in tracking the change of underwater acoustic channel, offset the impact of multipath and noise and improve the performance of communication system. The performance of the communication receiving system is better than that of the equal gain combination. At the same time, the bit error rate (BER) reduces 1.8%. 展开更多
关键词 SNR BER Spatial diversity and combination technology using amplitude and phase weighting method for phase-coherent underwater acoustic communications SDE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部