Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design...To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.展开更多
We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system.The key element of the system is the l...We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system.The key element of the system is the low noise frequency divider by 4 to differentiate the frequency of the forward signal from that of the backward one,thus suppressing the effect of Brillouin backscattering and parasitic reflection along the link.In terms of overlapping Allan deviation,the frequency transfer instability of 4.2×10-15 at 1-s integration time and 1.6×10-18 at one-day integration time was achieved.In addition,its sensitivity to the polarization mode dispersion in fiber is analyzed by comparing the results with and without laser polarization scrambling.Generally,with simplicity and robustness,the system can offer great potentials in constructing cascaded frequency transfer system and facilitate the building of fiber-based microwave transfer network.展开更多
A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
为了演示和验证稳定器设计的就地相位补偿法在多机电力系统中的应用,介绍在多机电力系统中,就地补偿设计稳定器的2个应用实例。第1个实例是在多机电力系统中就地补偿设计电力系统稳定器(power system stabilizer,PSS),阻尼电力系统局...为了演示和验证稳定器设计的就地相位补偿法在多机电力系统中的应用,介绍在多机电力系统中,就地补偿设计稳定器的2个应用实例。第1个实例是在多机电力系统中就地补偿设计电力系统稳定器(power system stabilizer,PSS),阻尼电力系统局部模振荡。第2个实例是就地补偿设计附加在静态同步补偿器(static synchronous compensator,STATCOM)上的稳定器,抑制多机电力系统中的区域模振荡,并给出在一个16机电力系统中的应用计算和仿真结果。展开更多
Magnetic behaviors of the Ising system with bilayer honeycomb lattice(BHL) structure are studied by using the effective-field theory(EFT) with correlations. The effects of the interaction parameters on the magneti...Magnetic behaviors of the Ising system with bilayer honeycomb lattice(BHL) structure are studied by using the effective-field theory(EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point(TCP).展开更多
The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of ...The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of inrush current are analyzed firstly. Then the difference of two kinds of phase compensation methods, from star to delta and from delta to star connection, is compared. The second harmonic ratio of symmetric inrush is analyzed specially. Using inrush waveform of a real transformer, second harmonic ratio of phase inrush and that of differential current under two kinds of phase compensation methods are calculated respectively. Furthermore, based on the calculation results, the effect of two kinds of phase compensation methods on the inrush current identification is proved. The analysis and calculation results show that the second harmonic ratio of symmetric inrush caused by phase compensation method, from star to delta, is not low. Moreover, the split-phase blocking scheme should not be adopted for differential protection of from delta to star compensation. Using the phase current without compensation to calculate the ratio of second harmonic is inadvisable too.展开更多
In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on ...In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on passive and active compensation is proposed. Firstly, There construction and capacity distribution are analyzed, and the compensation current of active equipment is gave;Second, the feature of the hybrid compensative schemes are discussed. In the end, the related simulation results have confirmed the effectiveness of the compensation schemes in this paper.展开更多
Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is p...Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is proposed to reduce the phase error caused by the nonlinear response of a digital projector in the three-dimensional measurement system of fringe structured light.According to the analysis of the influence of Gamma distortion on the phase calculation,the algorithm establishes the relationship model between phase error and harmonic coefficient,introduces phase shift to the signal,and keeps the signal amplitude constant while filtering out the DC component.The phase error is converted to the transform domain,and compared with the numeric value in the space domain.The algorithm is combined with a spiral phase function to optimize the Hilbert transform,so as to eliminate external noise,enhance the image quality,and get an accurate phase value.Experimental results show that the proposed method can effectively improve the accuracy and speed of phase measurement.By performing phase error compensation for free-form surface objects,the phase error is reduced by about 26%,and about 27%of the image reconstruction time is saved,which further demonstrates the feasibility and effectiveness of the method.展开更多
Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used...Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used in SAR. The ROPE algorithm is used in ISAR phase compensation and the concrete implementation steps are presented. Subsequently, the performance of ROPE is analyzed. For ISAR data that fit the ROPE algorithm model, an excellent compensation effect can be obtained with high computation efficiency. Finally, ISAR real data are processed with ROPE and its imaging result is compared with that obtained by the modified Doppler centroid tracking (MDCT) method, which is a robust and good estimator in ISAR phase compensation.展开更多
The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control st...The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly.展开更多
According to the Doppler sensitive of the phase coded pulse compression signal, a Doppler estimating and compensating method based on phase is put forward to restrain the Doppler sidelobes, raise the signal-to-noise r...According to the Doppler sensitive of the phase coded pulse compression signal, a Doppler estimating and compensating method based on phase is put forward to restrain the Doppler sidelobes, raise the signal-to-noise ratio and improve measuring resolution. The compensation method is used to decompose the echo to amplitude and phase, and then compose the new compensated echo by the amplitude and the nonlinear component of the phase. Furthermore the linear component of the phase can be used to estimate the Doppler frequency shift. The computer simulation and the real data processing show that the method has accurately estimated the Doppler frequency shift, successfully restrained the energy leakage on spectrum, greatly increased the echo signal-to-noise ratio and improved the detection performance of the radio system in both time domain and frequency domain.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
Presents a phase compensation against the signal distortion mainly caused by TWTA to solve the problem of compensation and modelling of a nonlinear QPSK satellite channel assumed to be bandlimited and exhibit both amp...Presents a phase compensation against the signal distortion mainly caused by TWTA to solve the problem of compensation and modelling of a nonlinear QPSK satellite channel assumed to be bandlimited and exhibit both amplitude and phase nonlinearities, and to lower the bit error probability of nonlinear channel, and concludes with simulation results that the compensation against phase distortion of TWTA can significantly improve the nonlinear performance of the channel.展开更多
MOtion COmpensation(MOCO) is an essential step in high resolution airborne Synthetic Aperture Radar(SAR) imaging. Generally, a reference altitude level is assumed and external Digital Elevation Model(DEM) is required ...MOtion COmpensation(MOCO) is an essential step in high resolution airborne Synthetic Aperture Radar(SAR) imaging. Generally, a reference altitude level is assumed and external Digital Elevation Model(DEM) is required for the scene topography heavily varied. To overcome the shortcoming, we propose a MOCO method based on Phase Gradient Autofocus(PGA) which can obtain well focused images without DEM. In the implementation, we first compensate the normal range-invariant term. Then the data are divided into strips in range-compressed domain and PGA is applied to each substrip to extract the phase errors. Finally, the phase error surface is obtained using interpolation and then compensated. Real airborne SAR data of a UAV-SAR system experiments and comparisons demonstrate the validity and effectiveness of the proposed algorithm. The results show that our algorithm is effective.展开更多
We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternating l...We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternating layers of a hexagonal lattice by using the Glauber-type stochastic dynamics.The lattice is formed by alternate layers of spins σ=5/2 and S=5/2.We employ the Glauber transition rates to construct the mean-field dynamic equations.First,we investigate the time variations of the average sublattice magnetizations to find the phases in the system and then the thermal behavior of the dynamic sublattice magnetizations to characterize the nature(first-or second-order) of the phase transitions and to obtain the dynamic phase transition(DPT) points.We also study the thermal behavior of the dynamic total magnetization to find the dynamic compensation temperature and to determine the type of the dynamic compensation behavior.We present the dynamic phase diagrams,including the dynamic compensation temperatures,in nine different planes.The phase diagrams contain seven different fundamental phases,thirteen different mixed phases,in which the binary and ternary combination of fundamental phases and the compensation temperature or the L-type behavior strongly depend on the interaction parameters.展开更多
Unmanned Aero Vehicles (UAV) has become a useful entity for quite a good number of industries and facilities. It is an agile, cost effective and reliable solution for communication, defense, security, delivery, survei...Unmanned Aero Vehicles (UAV) has become a useful entity for quite a good number of industries and facilities. It is an agile, cost effective and reliable solution for communication, defense, security, delivery, surveillance and surveying etc. However, their reliability is dependent on the resilient and stabilizes performance based on control systems embedded behind the body. Therefore, the UAV is majorly dependent upon controller design and the requirement of particular performance parameters. Nevertheless, in modern technologies there is always a room for improvement. In the similar manner a UAV lateral control system was implemented and researched in this study, which has been optimized using Proportional, Integral and Derivative (PID) controller, phase lead compensator and signal constraint controller. The significance of this study is the optimization of the existing UAV controller plant for improving lateral performance and stability. With this UAV community will benefit from designing robust controls using the optimized method utilized in this paper and moreover this will provide sophisticated control to operate in unpredictable environments. It is observed that results obtained for optimized lateral control dynamics using phase lead compensator (PLC) are efficacious than the simple PID feedback gains. However, for optimizing unwanted signals of lateral velocity, yaw rate, and yaw angle modes, PLC were integrated with PID to achieve dynamical stability.展开更多
A novel frequency compensation technique for three-stage amplifier with dual complex pole-zero (DCP) cancellation is proposed. It uses one pair of complex zeros to cancel one pair of complex poles, resulting in featur...A novel frequency compensation technique for three-stage amplifier with dual complex pole-zero (DCP) cancellation is proposed. It uses one pair of complex zeros to cancel one pair of complex poles, resulting in feature that frequency response of the three-stage amplifier exhibits that of a single-pole system. Thus the gain-bandwidth (GBW) is expected to be increased several times compared to the conventional nested miller compensation (NMC) approach. Moreover, this technique requires only one very small compensation capacitor even when driving a big load capacitor. A GBW 4.63 MHz, DC gain 100 dB, PM 90o and power dissipation 0.87 mW can be achieved for a load capacitor 100 pF with a single Miller compensation capacitor 2 pF at a ±1V supply in a standard 0.6-μm CMOS technology.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金This project was supported by the Aeronautics Foundation of China (00E51022).
文摘To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.
基金National Natural Science Foundation of China(Grant Nos.61825505,91536217,and 61127901).
文摘We demonstrate the transmission of a microwave frequency signal at 10 GHz over a 112-km urban fiber link based on a novel simple-architecture electronic phase compensation system.The key element of the system is the low noise frequency divider by 4 to differentiate the frequency of the forward signal from that of the backward one,thus suppressing the effect of Brillouin backscattering and parasitic reflection along the link.In terms of overlapping Allan deviation,the frequency transfer instability of 4.2×10-15 at 1-s integration time and 1.6×10-18 at one-day integration time was achieved.In addition,its sensitivity to the polarization mode dispersion in fiber is analyzed by comparing the results with and without laser polarization scrambling.Generally,with simplicity and robustness,the system can offer great potentials in constructing cascaded frequency transfer system and facilitate the building of fiber-based microwave transfer network.
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.
文摘为了演示和验证稳定器设计的就地相位补偿法在多机电力系统中的应用,介绍在多机电力系统中,就地补偿设计稳定器的2个应用实例。第1个实例是在多机电力系统中就地补偿设计电力系统稳定器(power system stabilizer,PSS),阻尼电力系统局部模振荡。第2个实例是就地补偿设计附加在静态同步补偿器(static synchronous compensator,STATCOM)上的稳定器,抑制多机电力系统中的区域模振荡,并给出在一个16机电力系统中的应用计算和仿真结果。
文摘Magnetic behaviors of the Ising system with bilayer honeycomb lattice(BHL) structure are studied by using the effective-field theory(EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point(TCP).
文摘The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of inrush current are analyzed firstly. Then the difference of two kinds of phase compensation methods, from star to delta and from delta to star connection, is compared. The second harmonic ratio of symmetric inrush is analyzed specially. Using inrush waveform of a real transformer, second harmonic ratio of phase inrush and that of differential current under two kinds of phase compensation methods are calculated respectively. Furthermore, based on the calculation results, the effect of two kinds of phase compensation methods on the inrush current identification is proved. The analysis and calculation results show that the second harmonic ratio of symmetric inrush caused by phase compensation method, from star to delta, is not low. Moreover, the split-phase blocking scheme should not be adopted for differential protection of from delta to star compensation. Using the phase current without compensation to calculate the ratio of second harmonic is inadvisable too.
文摘In order to solve negative phase sequence problem of V connection transformer in the high speed and heavy haul electrical railway of China, the hybrid compensative co-phase traction power supply system which based on passive and active compensation is proposed. Firstly, There construction and capacity distribution are analyzed, and the compensation current of active equipment is gave;Second, the feature of the hybrid compensative schemes are discussed. In the end, the related simulation results have confirmed the effectiveness of the compensation schemes in this paper.
基金This work is funded by the Scientific and Technological Projects of Henan Province under Grant 152102210115.
文摘Nonlinear response is an important factor affecting the accuracy of three-dimensional image measurement based on the fringe structured light method.A phase compensation algorithm combined with a Hilbert transform is proposed to reduce the phase error caused by the nonlinear response of a digital projector in the three-dimensional measurement system of fringe structured light.According to the analysis of the influence of Gamma distortion on the phase calculation,the algorithm establishes the relationship model between phase error and harmonic coefficient,introduces phase shift to the signal,and keeps the signal amplitude constant while filtering out the DC component.The phase error is converted to the transform domain,and compared with the numeric value in the space domain.The algorithm is combined with a spiral phase function to optimize the Hilbert transform,so as to eliminate external noise,enhance the image quality,and get an accurate phase value.Experimental results show that the proposed method can effectively improve the accuracy and speed of phase measurement.By performing phase error compensation for free-form surface objects,the phase error is reduced by about 26%,and about 27%of the image reconstruction time is saved,which further demonstrates the feasibility and effectiveness of the method.
文摘Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used in SAR. The ROPE algorithm is used in ISAR phase compensation and the concrete implementation steps are presented. Subsequently, the performance of ROPE is analyzed. For ISAR data that fit the ROPE algorithm model, an excellent compensation effect can be obtained with high computation efficiency. Finally, ISAR real data are processed with ROPE and its imaging result is compared with that obtained by the modified Doppler centroid tracking (MDCT) method, which is a robust and good estimator in ISAR phase compensation.
基金supported by the National Natural Science Foundation of China(Grant No.52202471)the National Natural Science Foundation of China:Regional Innovation and Development Joint Fund(Grant No.U20A20331)+2 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB659)the National Natural Science Foundation of China(Grant No.52002156 and 52072157)the Postgraduate Education Reform Project of Jiangsu Province(Grant No.KYCX21_3333).
文摘The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly.
基金supported partly by the National Natural Science Foundation of China(40804042)the Post DoctorFoundation of China(20070420919).
文摘According to the Doppler sensitive of the phase coded pulse compression signal, a Doppler estimating and compensating method based on phase is put forward to restrain the Doppler sidelobes, raise the signal-to-noise ratio and improve measuring resolution. The compensation method is used to decompose the echo to amplitude and phase, and then compose the new compensated echo by the amplitude and the nonlinear component of the phase. Furthermore the linear component of the phase can be used to estimate the Doppler frequency shift. The computer simulation and the real data processing show that the method has accurately estimated the Doppler frequency shift, successfully restrained the energy leakage on spectrum, greatly increased the echo signal-to-noise ratio and improved the detection performance of the radio system in both time domain and frequency domain.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
文摘Presents a phase compensation against the signal distortion mainly caused by TWTA to solve the problem of compensation and modelling of a nonlinear QPSK satellite channel assumed to be bandlimited and exhibit both amplitude and phase nonlinearities, and to lower the bit error probability of nonlinear channel, and concludes with simulation results that the compensation against phase distortion of TWTA can significantly improve the nonlinear performance of the channel.
文摘MOtion COmpensation(MOCO) is an essential step in high resolution airborne Synthetic Aperture Radar(SAR) imaging. Generally, a reference altitude level is assumed and external Digital Elevation Model(DEM) is required for the scene topography heavily varied. To overcome the shortcoming, we propose a MOCO method based on Phase Gradient Autofocus(PGA) which can obtain well focused images without DEM. In the implementation, we first compensate the normal range-invariant term. Then the data are divided into strips in range-compressed domain and PGA is applied to each substrip to extract the phase errors. Finally, the phase error surface is obtained using interpolation and then compensated. Real airborne SAR data of a UAV-SAR system experiments and comparisons demonstrate the validity and effectiveness of the proposed algorithm. The results show that our algorithm is effective.
文摘We present a study of the dynamic behavior of a two-sublattice spin-5/2 Ising model with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on alternating layers of a hexagonal lattice by using the Glauber-type stochastic dynamics.The lattice is formed by alternate layers of spins σ=5/2 and S=5/2.We employ the Glauber transition rates to construct the mean-field dynamic equations.First,we investigate the time variations of the average sublattice magnetizations to find the phases in the system and then the thermal behavior of the dynamic sublattice magnetizations to characterize the nature(first-or second-order) of the phase transitions and to obtain the dynamic phase transition(DPT) points.We also study the thermal behavior of the dynamic total magnetization to find the dynamic compensation temperature and to determine the type of the dynamic compensation behavior.We present the dynamic phase diagrams,including the dynamic compensation temperatures,in nine different planes.The phase diagrams contain seven different fundamental phases,thirteen different mixed phases,in which the binary and ternary combination of fundamental phases and the compensation temperature or the L-type behavior strongly depend on the interaction parameters.
文摘Unmanned Aero Vehicles (UAV) has become a useful entity for quite a good number of industries and facilities. It is an agile, cost effective and reliable solution for communication, defense, security, delivery, surveillance and surveying etc. However, their reliability is dependent on the resilient and stabilizes performance based on control systems embedded behind the body. Therefore, the UAV is majorly dependent upon controller design and the requirement of particular performance parameters. Nevertheless, in modern technologies there is always a room for improvement. In the similar manner a UAV lateral control system was implemented and researched in this study, which has been optimized using Proportional, Integral and Derivative (PID) controller, phase lead compensator and signal constraint controller. The significance of this study is the optimization of the existing UAV controller plant for improving lateral performance and stability. With this UAV community will benefit from designing robust controls using the optimized method utilized in this paper and moreover this will provide sophisticated control to operate in unpredictable environments. It is observed that results obtained for optimized lateral control dynamics using phase lead compensator (PLC) are efficacious than the simple PID feedback gains. However, for optimizing unwanted signals of lateral velocity, yaw rate, and yaw angle modes, PLC were integrated with PID to achieve dynamical stability.
文摘A novel frequency compensation technique for three-stage amplifier with dual complex pole-zero (DCP) cancellation is proposed. It uses one pair of complex zeros to cancel one pair of complex poles, resulting in feature that frequency response of the three-stage amplifier exhibits that of a single-pole system. Thus the gain-bandwidth (GBW) is expected to be increased several times compared to the conventional nested miller compensation (NMC) approach. Moreover, this technique requires only one very small compensation capacitor even when driving a big load capacitor. A GBW 4.63 MHz, DC gain 100 dB, PM 90o and power dissipation 0.87 mW can be achieved for a load capacitor 100 pF with a single Miller compensation capacitor 2 pF at a ±1V supply in a standard 0.6-μm CMOS technology.