The structure and electric properties of the mixed conductors of Li_(1+x)V_3O_8(x=0.1) containing dispersed second-phase α-Al_2O_3 particles have been studied in the paper. The total conductivity of the specimen cont...The structure and electric properties of the mixed conductors of Li_(1+x)V_3O_8(x=0.1) containing dispersed second-phase α-Al_2O_3 particles have been studied in the paper. The total conductivity of the specimen containing 6m/o α-Al_2O_3 is five or six times as much as that of pure Li_(1+x)V_3O_8 (x=0.1) at room temperature. By the analyses of NMR and ESR, it is known that at low temperature, the transport activation energy of Li^+ ions reduced, the transport frequency of Li^+ ions are speeded up and thus ionic conductivity increased in the specimens containing α-Al_2O_3 particles. At high temperature, diffusion effect of α-Al_2O_3 on electronic transport becomes great, the enhancement of ionic conductivity caused by α-Al_2O_3 doesn't make up the decrease of electronic conductivity caused by the diffusion effect, so that total conductivity of the specimens containing DSPP is lower than that of pure Li_(1+x)V_3O_8(x=0.1). As a result, DSPP mainly increases ionic conductivity of the mixed conductors at room temperature.展开更多
文摘The structure and electric properties of the mixed conductors of Li_(1+x)V_3O_8(x=0.1) containing dispersed second-phase α-Al_2O_3 particles have been studied in the paper. The total conductivity of the specimen containing 6m/o α-Al_2O_3 is five or six times as much as that of pure Li_(1+x)V_3O_8 (x=0.1) at room temperature. By the analyses of NMR and ESR, it is known that at low temperature, the transport activation energy of Li^+ ions reduced, the transport frequency of Li^+ ions are speeded up and thus ionic conductivity increased in the specimens containing α-Al_2O_3 particles. At high temperature, diffusion effect of α-Al_2O_3 on electronic transport becomes great, the enhancement of ionic conductivity caused by α-Al_2O_3 doesn't make up the decrease of electronic conductivity caused by the diffusion effect, so that total conductivity of the specimens containing DSPP is lower than that of pure Li_(1+x)V_3O_8(x=0.1). As a result, DSPP mainly increases ionic conductivity of the mixed conductors at room temperature.
基金supported by the Program for the Guangdong Introducing Innovative and Entrepreneurial Teams(2017ZT07C291)Shenzhen Science and Technology Program(KQTD20170810141424366)+2 种基金National Natural Science Foundation of China(22078276 and 22005260)2019 Special Program for Central Government Guiding Local Science and Technology Development:Environmental Purification Functional Materials Research Platform,Shenzhen Key Laboratory of Advanced Materials Product Engineering(ZDSYS20190911164401990)China Postdoctoral Science Foundation(2019TQ0307)。