Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin...Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.展开更多
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change...We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science.Despite considerable e...Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science.Despite considerable experimental and theoretical progress,current experimental studies have mainly focused on the local microstructural characterizations of recovered samples,which has certain limitations for hightemperature and high-pressure products,which often exhibit diversity.Here,we report on the pressure-induced phase transition behavior of natural single-crystal graphite under three distinct pressure-transmitting media from a macroscopic perspective using in situ two-dimensional Raman spectroscopy,scanning electron microscopy,and atomic force microscopy.The surface evolution process of graphite before and after the phase transition is captured,revealing that pressure-induced surface textures can impede the continuity of the phase transition process across the entire single crystal.Our results provide a fresh perspective for studying the phase transition behavior of graphite and greatly deepen our understanding of this behavior,which will be helpful in guiding further high-temperature and high-pressure syntheses of carbon allotropes.展开更多
The discovery of phase changings in two-dimensional(2D)materials driven by external stimuli not only helps to understand the various intriguing phases in 2D materials but also provides directions for constructing new ...The discovery of phase changings in two-dimensional(2D)materials driven by external stimuli not only helps to understand the various intriguing phases in 2D materials but also provides directions for constructing new functional devices.Here,by combining angle-resolved photoemission spectroscopy(ARPES)and in-situ alkali-metal deposition,we studied how alkali-metal adatoms affect the electronic structure of T_(d)-WTe_(2)on two different cleaved surfaces.We found that depending on the polarization direction of the cleaved surface,the alkali-metal deposition triggered two successive phase transitions on one surface of WTe_(2),while on the other surface,no phase transition was found.We attributed the observed phase transitions to a Td↑-1T′-Td↓structural transition driven by an alkali-metal induced sliding of WTe2layers.By comparing the band structure obtained in different structural phases of WTe_(2),we found that the evolution of band structure across different phases is characterized by an energy scale that could be related to the degree of orbital hybridization between two adjacent WTe_(2)layers.Our results demonstrate a method that manipulates the surface structure of bulk 2D materials.It also builds a direct correlation between the electronic structure and the degree of interlayer misalignment in this intriguing 2D material.展开更多
High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase co...High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.展开更多
An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) p...An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.展开更多
The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values o...The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values of phase- conjugation precision, we focus the corresponding beams into spots of the same size of 5.1 μm × 5.3 μm with a f/4 parabola in the 32 TW/36 fs Ti:sapphire laser system. The results show that the precision of conjugation can induce an intensity modulation but does not significantly affect the wavefront correction.展开更多
This paper gives a detailed theoretical investigation on phase conjugation induced by nearly degenerate fourwave mixing in single mode vertical-cavity surface-emitting lasers (VCSELs) with weak optical injection. Co...This paper gives a detailed theoretical investigation on phase conjugation induced by nearly degenerate fourwave mixing in single mode vertical-cavity surface-emitting lasers (VCSELs) with weak optical injection. Considering VCSELs that can work in linearly polarized or elliptically polarized states, it derives the theoretical expression of the conjugated field by small signal analysis based on the vectoral rate equations-the spin-flip model. For linearly polarized state, VCSELs show similar conjugate spectra to edge-emitting semiconductor lasers. For the elliptically polarized state, dichroism and birefringence parameters as well as the spin-flip rate can change the conjugate spectra. Especially, when frequency detuning of the probe and pump waves is between the positive and negative relaxation oscillation frequency, changes are evident. For specific values of parameters, conjugate efficiency between 20 dB to 40 dB are obtained.展开更多
In this letter,we present the observation of phase conjugation at 9.27μm in a GaAs/AlGaAs multiple step quantum well structure.The response is caused by the nearly resonant intersubband transition.The magnitude of X^...In this letter,we present the observation of phase conjugation at 9.27μm in a GaAs/AlGaAs multiple step quantum well structure.The response is caused by the nearly resonant intersubband transition.The magnitude of X^((3))determined by this phase conjugation method is about 8×10^(-5)esu and the phase conjugate reflectivityηis about 6×10^(-3)uncorrected for Fresnel reflections.展开更多
A new scheme of coherent mutually pumped phase conjugate(MPPC)reflection that depends on the formation of self-pumped phase conjugate reflection of another beam has been demonstrated in a Cu:KNSBN crystal.The dependen...A new scheme of coherent mutually pumped phase conjugate(MPPC)reflection that depends on the formation of self-pumped phase conjugate reflection of another beam has been demonstrated in a Cu:KNSBN crystal.The dependences of the MPPC reflectivity on the intensity ratio of the two incident beams and on the incident position of the signal beam were measured.We obtain phase conjugate reflectivities of greater than 90%at 488nm.展开更多
Phase conjugation in degenerate four-wave mixing with a squeezed input beam is investigated.We show that the phase conjugate mode is always super-Poissonian and never squeezed,but the combination mode may be squeezed ...Phase conjugation in degenerate four-wave mixing with a squeezed input beam is investigated.We show that the phase conjugate mode is always super-Poissonian and never squeezed,but the combination mode may be squeezed to an extent even greater than the input probe wave.展开更多
Mutually-pumped phase conjugation in BaTiO3 crystal with two coherent incident beams has been studied experimentally for the bridge configuration. We observed that when the two pump beams are blocked individually, the...Mutually-pumped phase conjugation in BaTiO3 crystal with two coherent incident beams has been studied experimentally for the bridge configuration. We observed that when the two pump beams are blocked individually, the transient behavior of the phase conjugation reflectivity with coherent beams was greatly different from that with incoherent beams. The phase conjugate reflectivity was sensitive to small perturbations such as vibration, exhibiting a change of as much as a factor of 10. The response time to the vibration was measured to be about 0.3s.展开更多
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ...The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
Self-pumped phase conjugate in trapezoid-cut Co-doped (KNa)_(0.1)(Sr_(0.75)Ba_(0.25))_(0.9)Nb_(2)O_(6)(Co-KNSBN)crystal was demonstrated without external reflection mirrors and applied field,phase conjugation reflecti...Self-pumped phase conjugate in trapezoid-cut Co-doped (KNa)_(0.1)(Sr_(0.75)Ba_(0.25))_(0.9)Nb_(2)O_(6)(Co-KNSBN)crystal was demonstrated without external reflection mirrors and applied field,phase conjugation reflectivities as high as 40.5%were measured.The threshold power was lower than 0.02 W/cm^(2).The device was operated in one-region four-wave mixing using the photorefractive effect.展开更多
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol...Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
The demand for wearable electronics is still growing,and the rapid development of new electrochemical materials and manufacturing processes allows for innovative approaches to power these devices.Here,three-dimensiona...The demand for wearable electronics is still growing,and the rapid development of new electrochemical materials and manufacturing processes allows for innovative approaches to power these devices.Here,three-dimensional(3D)self-supported reduced graphene oxide/poly(3,4-ethylenedioxythiophene)(rGO/PEDOT)hybrid fiber fabrics are systematically designed and constructed via phase inversion-based microfluidic-fiber-spinning assembly(MFSA)method,followed by concentrated sulfuric acid treatment and chemical reduction.The rGO/PEDOT fiber fabrics demonstrate favorable flexibility,interconnected hierarchical network,large specific surface area,high charge storage capacity,and high electrical conductivity.In addition,the all-solid-state supercapacitor made of these rGO/PEDOT fiber fabrics proves large specific capacitance(1028.2 mF cm^(−2)),ultrahigh energy density(22.7μWh cm^(−2)),long-term cycling stability,and excellent flexibility(capacitance retention remains at 84%,after 5000 cycles of continuous deformation at 180o bending angles).Further considering those remarkable electrochemical properties,a wearable self-powered device with a sandwich-shaped supercapacitor(SC)is designed to impressively light up LEDs and power mini game console,suggesting its practical applications in flexible and portable smart electronics.展开更多
文摘Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
基金Funded by Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金support from the National Science Fund for Distinguished Young Scholars(Grant No.T2225027)the NSAF(Grant No.U1930401)+1 种基金the National Key R&D Program of China(MOST)(Grant No.2023YFA1406500)the National Natural Science Foundation of China(NSFC)(Grant No.61674045).
文摘Comprehensive understanding of the direct transformation pathway from graphite to diamond under high temperature and high pressure has long been one of the fundamental goals in materials science.Despite considerable experimental and theoretical progress,current experimental studies have mainly focused on the local microstructural characterizations of recovered samples,which has certain limitations for hightemperature and high-pressure products,which often exhibit diversity.Here,we report on the pressure-induced phase transition behavior of natural single-crystal graphite under three distinct pressure-transmitting media from a macroscopic perspective using in situ two-dimensional Raman spectroscopy,scanning electron microscopy,and atomic force microscopy.The surface evolution process of graphite before and after the phase transition is captured,revealing that pressure-induced surface textures can impede the continuity of the phase transition process across the entire single crystal.Our results provide a fresh perspective for studying the phase transition behavior of graphite and greatly deepen our understanding of this behavior,which will be helpful in guiding further high-temperature and high-pressure syntheses of carbon allotropes.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403502)the National Natural Science Foundation of China(Grant No.11888101)。
文摘The discovery of phase changings in two-dimensional(2D)materials driven by external stimuli not only helps to understand the various intriguing phases in 2D materials but also provides directions for constructing new functional devices.Here,by combining angle-resolved photoemission spectroscopy(ARPES)and in-situ alkali-metal deposition,we studied how alkali-metal adatoms affect the electronic structure of T_(d)-WTe_(2)on two different cleaved surfaces.We found that depending on the polarization direction of the cleaved surface,the alkali-metal deposition triggered two successive phase transitions on one surface of WTe_(2),while on the other surface,no phase transition was found.We attributed the observed phase transitions to a Td↑-1T′-Td↓structural transition driven by an alkali-metal induced sliding of WTe2layers.By comparing the band structure obtained in different structural phases of WTe_(2),we found that the evolution of band structure across different phases is characterized by an energy scale that could be related to the degree of orbital hybridization between two adjacent WTe_(2)layers.Our results demonstrate a method that manipulates the surface structure of bulk 2D materials.It also builds a direct correlation between the electronic structure and the degree of interlayer misalignment in this intriguing 2D material.
文摘High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.
基金This work was supported by National Natural Science Foundation of China (No. 59873001)Scientific Foundation for Returned Overseas Chinese Scholars, Ministry of Education.
文摘An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the National Natural Science Foundation of China(Grant No.60921004)
文摘The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values of phase- conjugation precision, we focus the corresponding beams into spots of the same size of 5.1 μm × 5.3 μm with a f/4 parabola in the 32 TW/36 fs Ti:sapphire laser system. The results show that the precision of conjugation can induce an intensity modulation but does not significantly affect the wavefront correction.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070613058)the Foundation for Key Program of Ministry of Education, China (Grant No 2005105148)the Doctoral Innovation Fund of Southwest Jiaotong University of China
文摘This paper gives a detailed theoretical investigation on phase conjugation induced by nearly degenerate fourwave mixing in single mode vertical-cavity surface-emitting lasers (VCSELs) with weak optical injection. Considering VCSELs that can work in linearly polarized or elliptically polarized states, it derives the theoretical expression of the conjugated field by small signal analysis based on the vectoral rate equations-the spin-flip model. For linearly polarized state, VCSELs show similar conjugate spectra to edge-emitting semiconductor lasers. For the elliptically polarized state, dichroism and birefringence parameters as well as the spin-flip rate can change the conjugate spectra. Especially, when frequency detuning of the probe and pump waves is between the positive and negative relaxation oscillation frequency, changes are evident. For specific values of parameters, conjugate efficiency between 20 dB to 40 dB are obtained.
文摘In this letter,we present the observation of phase conjugation at 9.27μm in a GaAs/AlGaAs multiple step quantum well structure.The response is caused by the nearly resonant intersubband transition.The magnitude of X^((3))determined by this phase conjugation method is about 8×10^(-5)esu and the phase conjugate reflectivityηis about 6×10^(-3)uncorrected for Fresnel reflections.
基金Supported by the Scioice Foundation of the State Education Commission for the Doctoral Program.
文摘A new scheme of coherent mutually pumped phase conjugate(MPPC)reflection that depends on the formation of self-pumped phase conjugate reflection of another beam has been demonstrated in a Cu:KNSBN crystal.The dependences of the MPPC reflectivity on the intensity ratio of the two incident beams and on the incident position of the signal beam were measured.We obtain phase conjugate reflectivities of greater than 90%at 488nm.
基金Supported by the National Natural Science Foundation of China and the Third World Academy of Sciences.
文摘Phase conjugation in degenerate four-wave mixing with a squeezed input beam is investigated.We show that the phase conjugate mode is always super-Poissonian and never squeezed,but the combination mode may be squeezed to an extent even greater than the input probe wave.
基金the National Natural Science Foundation of China under Grant No.19674067.
文摘Mutually-pumped phase conjugation in BaTiO3 crystal with two coherent incident beams has been studied experimentally for the bridge configuration. We observed that when the two pump beams are blocked individually, the transient behavior of the phase conjugation reflectivity with coherent beams was greatly different from that with incoherent beams. The phase conjugate reflectivity was sensitive to small perturbations such as vibration, exhibiting a change of as much as a factor of 10. The response time to the vibration was measured to be about 0.3s.
基金supported by the National Natural Science Foundation of China (52173273)Fundamental Research Funds for the Central Universities (2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths (No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute (No.2023SJ02)。
文摘The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
文摘Self-pumped phase conjugate in trapezoid-cut Co-doped (KNa)_(0.1)(Sr_(0.75)Ba_(0.25))_(0.9)Nb_(2)O_(6)(Co-KNSBN)crystal was demonstrated without external reflection mirrors and applied field,phase conjugation reflectivities as high as 40.5%were measured.The threshold power was lower than 0.02 W/cm^(2).The device was operated in one-region four-wave mixing using the photorefractive effect.
基金supported by the Jiangsu Province Natural Science Foundation(Grant No.BK20201492)the Key Medical Research Project of Jiangsu Provincial Health Commission(Grant No.K2019002)the Clinical Capacity Improvement Project of Jiangsu Province People's Hospital(Grant No.JSPH-MA-2021-8).
文摘Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
基金supported by National Natural Science Foundation of China(11572160,22278225).
文摘The demand for wearable electronics is still growing,and the rapid development of new electrochemical materials and manufacturing processes allows for innovative approaches to power these devices.Here,three-dimensional(3D)self-supported reduced graphene oxide/poly(3,4-ethylenedioxythiophene)(rGO/PEDOT)hybrid fiber fabrics are systematically designed and constructed via phase inversion-based microfluidic-fiber-spinning assembly(MFSA)method,followed by concentrated sulfuric acid treatment and chemical reduction.The rGO/PEDOT fiber fabrics demonstrate favorable flexibility,interconnected hierarchical network,large specific surface area,high charge storage capacity,and high electrical conductivity.In addition,the all-solid-state supercapacitor made of these rGO/PEDOT fiber fabrics proves large specific capacitance(1028.2 mF cm^(−2)),ultrahigh energy density(22.7μWh cm^(−2)),long-term cycling stability,and excellent flexibility(capacitance retention remains at 84%,after 5000 cycles of continuous deformation at 180o bending angles).Further considering those remarkable electrochemical properties,a wearable self-powered device with a sandwich-shaped supercapacitor(SC)is designed to impressively light up LEDs and power mini game console,suggesting its practical applications in flexible and portable smart electronics.