A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric ...A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.展开更多
We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe<sub>2</sub>As<sub>2</sub> and its phase transition under pressure using Q...We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe<sub>2</sub>As<sub>2</sub> and its phase transition under pressure using Quantum Espresso code. We do analysis of the strength of bonds in individual points of this material and proper Cauchy pressure calculation which will give more insight on the elastic responses. Ground state energy was done in the framework of density functional theory (DFT) based on plane wave self-consistent field (PWscf) and ultrasoft pseudo potential (USPP) method as treated in the Perdew-Burke Ernzerhof (PBE) generalized gradient approximation and local density approximations. Elastic constants were computed using thermo_pw and the values were used to calculate mechanical properties and pressure phase changes. From the non-zero positive elastic constants, the Iron Pnictide compound is found to be mechanically stable and its Poisson’s ratio indicates that it is brittle and isotropic. Pressure induced phase transition is here found to happen at an applied external pressure of 0.2 GPa causing the tetragonal phase to change to an orthorhombic phase which agrees well with previous reports.展开更多
We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe<sub>2</sub>As<sub>2</sub> and its phase transition under pressure using Q...We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe<sub>2</sub>As<sub>2</sub> and its phase transition under pressure using Quantum Espresso code. We do analysis of the strength of bonds in individual points of this material and proper Cauchy pressure calculation which will give more insight on the elastic responses. Ground state energy was done in the framework of density functional theory (DFT) based on plane wave self-consistent field (PWscf) and ultrasoft pseudo potential (USPP) method as treated in the Perdew-Burke Ernzerhof (PBE) generalized gradient approximation and local density approximations. Elastic constants were computed using thermo_pw and the values were used to calculate mechanical properties and pressure phase changes. From the non-zero positive elastic constants, the Iron Pnictide compound is found to be mechanically stable and its Poisson’s ratio indicates that it is brittle and isotropic. Pressure induced phase transition is here found to happen at an applied external pressure of 0.2 GPa causing the tetragonal phase to change to an orthorhombic phase which agrees well with previous reports.展开更多
Rate constants for the reactions of NO3 and SO4 radicals with oxalic acid and oxalate anions in aqueous solution have been measured using pulse radiolysis and laser flash photolysis.
在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此,无线电能传输(wireless power transfer,WPT)系统需要同时具备实现双输出的能力,且在双输出状态之间进行平稳切换。基于此,分析双边LCC(inductor-capacitor-capacit...在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此,无线电能传输(wireless power transfer,WPT)系统需要同时具备实现双输出的能力,且在双输出状态之间进行平稳切换。基于此,分析双边LCC(inductor-capacitor-capacitor)拓扑实现与负载无关的恒流/恒压输出条件,给出参数设计方法。针对系统可能会随机在不同方向上出现位移的情况,采用了双向同轴平面线圈的结构,即原边线圈由内外2个沿相反方向绕制的线圈串联组成。通过仿真和实验验证了本文提出的电动汽车无线充电系统具备同时实现恒流/恒压输出的能力,且在多方向偏移工况下实现稳定输出。展开更多
Antiferroelectric ferroelectric (AFE-FE) phase transition in ceramic Pbo.97Lao.02(Zro.75Snon36Tion14)O3 (PLZST) was studied by dielectric spectroscopy as functions of frequency (102-105 Hz) and pressure (0-50...Antiferroelectric ferroelectric (AFE-FE) phase transition in ceramic Pbo.97Lao.02(Zro.75Snon36Tion14)O3 (PLZST) was studied by dielectric spectroscopy as functions of frequency (102-105 Hz) and pressure (0-500 MPa) under a DC electric field. The hydrostatic pressure-dependent remnant polarization and dielectric constant were mea- sured. The results show that remnant polarization of the metastable rhombohedral ferroelectric PLZST poled ceramic decreases sharply and depoles completely at phase transition under hydrostatic pressure. The dielectric constant um dergoes an abrupt jump twice during a load and unload cycle under an electric field. The two abrupt jumps correspond to two phase transitions, FE AFE and AFE-FE.展开更多
A laser flash photolysis study of the reactivity of Cl˙with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was ca...A laser flash photolysis study of the reactivity of Cl˙with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was carried out. The obtained rate constants can be used for atmospheric modeling.展开更多
基金Projected supported by the National Natural Science Foundation of China(Nos.11502123 and11262012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2015JQ01)
文摘A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.
文摘We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe<sub>2</sub>As<sub>2</sub> and its phase transition under pressure using Quantum Espresso code. We do analysis of the strength of bonds in individual points of this material and proper Cauchy pressure calculation which will give more insight on the elastic responses. Ground state energy was done in the framework of density functional theory (DFT) based on plane wave self-consistent field (PWscf) and ultrasoft pseudo potential (USPP) method as treated in the Perdew-Burke Ernzerhof (PBE) generalized gradient approximation and local density approximations. Elastic constants were computed using thermo_pw and the values were used to calculate mechanical properties and pressure phase changes. From the non-zero positive elastic constants, the Iron Pnictide compound is found to be mechanically stable and its Poisson’s ratio indicates that it is brittle and isotropic. Pressure induced phase transition is here found to happen at an applied external pressure of 0.2 GPa causing the tetragonal phase to change to an orthorhombic phase which agrees well with previous reports.
文摘We report results on the ab initio study of the mechanical and electronic properties of the iron Pnictide compound CaFe<sub>2</sub>As<sub>2</sub> and its phase transition under pressure using Quantum Espresso code. We do analysis of the strength of bonds in individual points of this material and proper Cauchy pressure calculation which will give more insight on the elastic responses. Ground state energy was done in the framework of density functional theory (DFT) based on plane wave self-consistent field (PWscf) and ultrasoft pseudo potential (USPP) method as treated in the Perdew-Burke Ernzerhof (PBE) generalized gradient approximation and local density approximations. Elastic constants were computed using thermo_pw and the values were used to calculate mechanical properties and pressure phase changes. From the non-zero positive elastic constants, the Iron Pnictide compound is found to be mechanically stable and its Poisson’s ratio indicates that it is brittle and isotropic. Pressure induced phase transition is here found to happen at an applied external pressure of 0.2 GPa causing the tetragonal phase to change to an orthorhombic phase which agrees well with previous reports.
文摘Rate constants for the reactions of NO3 and SO4 radicals with oxalic acid and oxalate anions in aqueous solution have been measured using pulse radiolysis and laser flash photolysis.
文摘在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此,无线电能传输(wireless power transfer,WPT)系统需要同时具备实现双输出的能力,且在双输出状态之间进行平稳切换。基于此,分析双边LCC(inductor-capacitor-capacitor)拓扑实现与负载无关的恒流/恒压输出条件,给出参数设计方法。针对系统可能会随机在不同方向上出现位移的情况,采用了双向同轴平面线圈的结构,即原边线圈由内外2个沿相反方向绕制的线圈串联组成。通过仿真和实验验证了本文提出的电动汽车无线充电系统具备同时实现恒流/恒压输出的能力,且在多方向偏移工况下实现稳定输出。
基金Project supported by the National Basic Research Program of China (Grant No.2009CB623306)the International Science & Technology Cooperation Program of China (Grant No.2010DFR50480)the National Natural Science Foundation of China (Grant No.10976022)
文摘Antiferroelectric ferroelectric (AFE-FE) phase transition in ceramic Pbo.97Lao.02(Zro.75Snon36Tion14)O3 (PLZST) was studied by dielectric spectroscopy as functions of frequency (102-105 Hz) and pressure (0-500 MPa) under a DC electric field. The hydrostatic pressure-dependent remnant polarization and dielectric constant were mea- sured. The results show that remnant polarization of the metastable rhombohedral ferroelectric PLZST poled ceramic decreases sharply and depoles completely at phase transition under hydrostatic pressure. The dielectric constant um dergoes an abrupt jump twice during a load and unload cycle under an electric field. The two abrupt jumps correspond to two phase transitions, FE AFE and AFE-FE.
文摘A laser flash photolysis study of the reactivity of Cl˙with glyoxal, glyoxal mono- and dibisulfite adducts, 1-hydroxy-2, 2-diol-ethanesulfonate and 1, 2-dihydroxy-1, 2-ethanedi sulfonate in the aqueous phase was carried out. The obtained rate constants can be used for atmospheric modeling.