期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Role of Disclinations and Nanocrystalline State in the Formation of Quasicrystalline Phases on Mechanical Alloying of Cu-Fe Powders
1
作者 R.Subramanian and S.S.Raznakrishnan (Department of Metallurgy, P.S.G. College of Technology, Coimbatore-641004, Tamilnadu, India) P.Shankar+ (Materials Charasterisation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamilnadu, India) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期499-503,共5页
Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of qu... Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation. 展开更多
关键词 Fe Role of Disclinations and Nanocrystalline State in the formation of Quasicrystalline phases on Mechanical Alloying of Cu-Fe Powders Cu
下载PDF
Phase evolution and mechanical properties of low-activation refractory high-entropy alloy Ti_(1.5)ZrV_(0.5)Ta_(0.5)
2
作者 Yuxiang Chen Ningyu Li +3 位作者 Yijie Wang Kang Liu Yongqin Chang Mingyang Li 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第7期145-156,共12页
A novel low-activation Ti_(1.5)ZrV_(0.5)Ta_(0.5)refractory high-entropy alloy(RHEA)was designed as a potential candidate for nuclear reactor application.At room temperature,it had an elongation of 8.4%and a yield stre... A novel low-activation Ti_(1.5)ZrV_(0.5)Ta_(0.5)refractory high-entropy alloy(RHEA)was designed as a potential candidate for nuclear reactor application.At room temperature,it had an elongation of 8.4%and a yield strength of 1096 MPa.The phase evolution of this alloy and its effect on properties was investigated.At 400℃,the solid solution bcc 1 transformed into the fcc phase and bcc 2 phase,and theωphase andαphase also appeared.At 600℃,theωphase andαphase disappeared,and the microstructure of the alloy was composed of the fcc phase and bcc 2 phase.When the temperature was up to 1200℃,the fcc phase and bcc 2 phase re-transformed into solid solution bcc 1 phase.The precipitation ofωphase andαphase caused a sharp increase in strength and a decrease in plasticity.Meanwhile,the appearance of the fcc phase led to a simultaneous decrease in strength and ductility,due to larger stress concentrations at the fcc/bcc interface.Besides,the formation mechanism of each phase in the alloy was discussed in detail. 展开更多
关键词 Low-activation Refractory high-entropy alloy phase evolution phase formation mechanism Strengthening mechanism
原文传递
Microstructural Characterizations and Mechanical Properties of Mg-8Sn-1Al-1Zn-xCu Alloys 被引量:1
3
作者 程伟丽 WANG Miao +5 位作者 QUE Zhongping WANG Hongxia ZHANG Jinshan XU Chunxiang YOU Bongsun YIM Changdong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期803-807,共5页
Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing ma... Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing machine. The experimental results indicate that adding Cu to TAZ811 alloy leads to the formation of the AlMgCu and Cu3 Sn phases. Tensile tests indicate that yield strength increases fi rstly and then decreases with increasing Cu content. The alloy with the addition of 1.5wt% Cu exhibits optimal mechanical properties among the studied alloys. The improved mechanical properties can be ascribed to the second phase strengthening and fi ne-grain strengthening mechanisms resulting from the more dispersed second phases and smaller grain size, respectively. The decrease in ultimate tensile strength and elongation of TAZ811-2.0wt% Cu alloy at room temperature is ascribed to the formation of continuous AlMgCu and coarse Mg2 Sn phases in the liquid state. 展开更多
关键词 Mg alloys phase formation microstructure mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部