The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sinte...The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).展开更多
The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on densi...The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on density functional theory.The hybridized states of Nb 4d and O 2p states are observed in the valence band, showing the formation of a strong Nb–O covalent bond which should be responsible for the displacement of Nb and O atoms. The abnormally large BECs of Nb and O indicate the possibility of phase instability induced by the off-center displacement of Nb and O atoms. The phonon dispersions reveal that the ferroelectric instability of K0.5Na0.5Nb O3 is dominated by Nb and O displacements with significant Na characteristics. In addition to the ferroelectric instability, there is also rotational instability coming from the oxygen octahedra rotation around one axis. Moreover, the Γ phonon properties of orthorhombic KNb O3, Na Nb O3, and K0.5Na0.5Nb O3 are also studied in detail.展开更多
The electronic structures of lead-free piezoceramic(K0.5Na0.5)NbO3(KNN)and La-doped KNN((K0.5Na0.5)0.994La0.006NbO3)are studied by using first principles calculation on the basis of density functional theory(DFT).The ...The electronic structures of lead-free piezoceramic(K0.5Na0.5)NbO3(KNN)and La-doped KNN((K0.5Na0.5)0.994La0.006NbO3)are studied by using first principles calculation on the basis of density functional theory(DFT).The results reveale that the piezoelectricity stems from strong hybridization between the Nb atom and the O atom.At the same time,the K or Na atoms are replaced by the La doping atoms,which brings about the anisotropic relaxation.The La doping reduces the forbidden band,at the same time it makes Fermi surfaces shift toward the energetic conduction band(CB)of KNN.With the increase of La-doping intent,the phase structure of KNN extends from O-phase to T-phase and improves the piezoelectric properties of KNN.展开更多
Rare-earth doped inorganic ferroelectrics are considered as novel photochromic materials,with potential applications for optical switch and information storage(K0.5Na0.5)1–xEuxNbO3(KNN:xEu)ceramics were prepared by h...Rare-earth doped inorganic ferroelectrics are considered as novel photochromic materials,with potential applications for optical switch and information storage(K0.5Na0.5)1–xEuxNbO3(KNN:xEu)ceramics were prepared by high temperature calcination,with precursor powder obtained by hydrothermal method.Strong red emission at 615 nm was observed which corresponds to the 5D0→7F2 transition of Eu3+under excitation of 465 nm.Under UV light irradiation for 3 min,the color of the ceramics turned from milky white to dark gray.The colored samples returned to the original color when heated at 200℃for 10 min,showing strong photochromic behavior.Meanwhile,the luminescence intensity of Eu3+can be tuned without obvious degradation by alternating UV light and heat stimulus.Upon UV light irradiation,large luminescence modulation ratio(ΔRt)up to 83.9%was achieved for KNN:0.06Eu,indicating good luminescence switching behavior.A possible mechanism for non-radiative energy transfer from the luminescent center to the color center was proposed according to their luminescent behavior.展开更多
The lead-free piezoelectric ceramics (1-x)(K0.5Na0.5)NbO3-xLiNbO3(abbreviated as KNLN) were synthesized by a traditional solid state reaction. The effects of Li+ on the sintering characteristic, the phase structure an...The lead-free piezoelectric ceramics (1-x)(K0.5Na0.5)NbO3-xLiNbO3(abbreviated as KNLN) were synthesized by a traditional solid state reaction. The effects of Li+ on the sintering characteristic, the phase structure and piezoelectric properties of KNLN ceramics were investigated. The sintering temperature of KNN-based ceramics is decreased by doping Li+ and the range of the sintering temperature is narrow. The KNLN ceramics exhibit an enhanced piezoelectric properties with the piezoelectric constant d33 value of 180-200 pC/N, The electromechanical coupling coefficients kp is 35%-40%. The results show that (1-x)(K0.5Na0.5)-NbO3-xLiNbO3 (x=0.05, 0.06) is a promising high-temperature lead free piezoelectric ceramic.展开更多
The lead-free piezoelectric ceramics (K0.5Na0.5)NbO3 (abbreviated as KNN) with the relative density of 97.6% were synthesized by press-less sintering owing to the careful control of processing conditions. The phase st...The lead-free piezoelectric ceramics (K0.5Na0.5)NbO3 (abbreviated as KNN) with the relative density of 97.6% were synthesized by press-less sintering owing to the careful control of processing conditions. The phase structure of KNN ceramics was analyzed. The results show that the pure perovskite phase with orthorhombic symmetry is in all ceramics specimens. The effect of poling conditions on the piezoelectric properties of KNN ceramics was investigated. The results show that the piezoelectric constant d33 and electromechanical coupling factor kp increase with poling field, poling temperature and poling time increasing, then decrease because of electric broken. Take into account of poling conditions and piezoelectric properties of pure KNN ceramics, the optimum poling conditions for pure KNN ceramics are poling field of 4 kV/mm, poling temperature of 140℃and poling time of 20-25 min.展开更多
基金Project(CX201108)supported by the Doctorate Foundation of Northwestern Polytechnical University,ChinaProject(51072165)supported by the National Natural Science Foundation of ChinaProjects(KP200901,SKLSP201104)supported by the Fund of State Key Laboratory of Solidification Processing in NWPU,China
文摘The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).
基金Project supported by the Jiangxi Provincial Natural Science Foundation,China(Grant No.20122BAB216007)the Foundation of Jiangxi Provincial Educational Committee,China(Grant No.GJJ14648)
文摘The electronic structures, Born effective charges(BECs), and full phonon dispersions of cubic, tetragonal, orthorhombic, and rhombohedral K0.5Na0.5Nb O3 are investigated by the first principles method based on density functional theory.The hybridized states of Nb 4d and O 2p states are observed in the valence band, showing the formation of a strong Nb–O covalent bond which should be responsible for the displacement of Nb and O atoms. The abnormally large BECs of Nb and O indicate the possibility of phase instability induced by the off-center displacement of Nb and O atoms. The phonon dispersions reveal that the ferroelectric instability of K0.5Na0.5Nb O3 is dominated by Nb and O displacements with significant Na characteristics. In addition to the ferroelectric instability, there is also rotational instability coming from the oxygen octahedra rotation around one axis. Moreover, the Γ phonon properties of orthorhombic KNb O3, Na Nb O3, and K0.5Na0.5Nb O3 are also studied in detail.
基金National Natural Science Foundation of China(Grant Nos.51572143,51822206,and 51932010).
文摘The electronic structures of lead-free piezoceramic(K0.5Na0.5)NbO3(KNN)and La-doped KNN((K0.5Na0.5)0.994La0.006NbO3)are studied by using first principles calculation on the basis of density functional theory(DFT).The results reveale that the piezoelectricity stems from strong hybridization between the Nb atom and the O atom.At the same time,the K or Na atoms are replaced by the La doping atoms,which brings about the anisotropic relaxation.The La doping reduces the forbidden band,at the same time it makes Fermi surfaces shift toward the energetic conduction band(CB)of KNN.With the increase of La-doping intent,the phase structure of KNN extends from O-phase to T-phase and improves the piezoelectric properties of KNN.
基金National Natural Science Foundation of China(61605116,51972213)Science and Technology Commission of Shanghai Municipality(15ZR1440600,15520503400)。
文摘Rare-earth doped inorganic ferroelectrics are considered as novel photochromic materials,with potential applications for optical switch and information storage(K0.5Na0.5)1–xEuxNbO3(KNN:xEu)ceramics were prepared by high temperature calcination,with precursor powder obtained by hydrothermal method.Strong red emission at 615 nm was observed which corresponds to the 5D0→7F2 transition of Eu3+under excitation of 465 nm.Under UV light irradiation for 3 min,the color of the ceramics turned from milky white to dark gray.The colored samples returned to the original color when heated at 200℃for 10 min,showing strong photochromic behavior.Meanwhile,the luminescence intensity of Eu3+can be tuned without obvious degradation by alternating UV light and heat stimulus.Upon UV light irradiation,large luminescence modulation ratio(ΔRt)up to 83.9%was achieved for KNN:0.06Eu,indicating good luminescence switching behavior.A possible mechanism for non-radiative energy transfer from the luminescent center to the color center was proposed according to their luminescent behavior.
基金Project( 10474077) supported by the National Natural Science Foundation of China Project(2002CB613304) supported by the National Basic Research Program of China
文摘The lead-free piezoelectric ceramics (1-x)(K0.5Na0.5)NbO3-xLiNbO3(abbreviated as KNLN) were synthesized by a traditional solid state reaction. The effects of Li+ on the sintering characteristic, the phase structure and piezoelectric properties of KNLN ceramics were investigated. The sintering temperature of KNN-based ceramics is decreased by doping Li+ and the range of the sintering temperature is narrow. The KNLN ceramics exhibit an enhanced piezoelectric properties with the piezoelectric constant d33 value of 180-200 pC/N, The electromechanical coupling coefficients kp is 35%-40%. The results show that (1-x)(K0.5Na0.5)-NbO3-xLiNbO3 (x=0.05, 0.06) is a promising high-temperature lead free piezoelectric ceramic.
基金Project(10474077) supported by the National Natural Science Foundation of China Project(2002CB613304) supported by the National Basic Research Program of China
文摘The lead-free piezoelectric ceramics (K0.5Na0.5)NbO3 (abbreviated as KNN) with the relative density of 97.6% were synthesized by press-less sintering owing to the careful control of processing conditions. The phase structure of KNN ceramics was analyzed. The results show that the pure perovskite phase with orthorhombic symmetry is in all ceramics specimens. The effect of poling conditions on the piezoelectric properties of KNN ceramics was investigated. The results show that the piezoelectric constant d33 and electromechanical coupling factor kp increase with poling field, poling temperature and poling time increasing, then decrease because of electric broken. Take into account of poling conditions and piezoelectric properties of pure KNN ceramics, the optimum poling conditions for pure KNN ceramics are poling field of 4 kV/mm, poling temperature of 140℃and poling time of 20-25 min.