In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr...In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.展开更多
The artificial neural network method has been applied to the relationship between the atomic parameters and intemction packeters of binary alloy Phases, and the principle of thermodynamics in combination with artifici...The artificial neural network method has been applied to the relationship between the atomic parameters and intemction packeters of binary alloy Phases, and the principle of thermodynamics in combination with artificial neural network method has been used for the computerized phase diagrams of continuous solid solution of bigamy alloy systems. The computerized phase diagrams well agree with the real phase diagmms.展开更多
We study the synchronization dynamics in a system of multiple interacting populations of phase oscillators. Using the dimensionality-reduction technique of Ott and Antonsen, we explore different types of synchronizati...We study the synchronization dynamics in a system of multiple interacting populations of phase oscillators. Using the dimensionality-reduction technique of Ott and Antonsen, we explore different types of synchronization dynamics when the incoherent state becomes unstable. We find that the inter-population coupling is crucial to the synchronization. When the intra-population interaction is repulsive, the local synchronization can still be maintained through the inter-population coupling. For attractive inter-population coupling, the local order parameters in different populations are of in-phase while the local synchronization are of anti-phase for repulsive inter-population coupling.展开更多
We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps formi...We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.展开更多
This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized ...This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.展开更多
文摘In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.
文摘The artificial neural network method has been applied to the relationship between the atomic parameters and intemction packeters of binary alloy Phases, and the principle of thermodynamics in combination with artificial neural network method has been used for the computerized phase diagrams of continuous solid solution of bigamy alloy systems. The computerized phase diagrams well agree with the real phase diagmms.
文摘We study the synchronization dynamics in a system of multiple interacting populations of phase oscillators. Using the dimensionality-reduction technique of Ott and Antonsen, we explore different types of synchronization dynamics when the incoherent state becomes unstable. We find that the inter-population coupling is crucial to the synchronization. When the intra-population interaction is repulsive, the local synchronization can still be maintained through the inter-population coupling. For attractive inter-population coupling, the local order parameters in different populations are of in-phase while the local synchronization are of anti-phase for repulsive inter-population coupling.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.115074045 and 11204187)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131284)
文摘We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.
基金the funding from National Nature Science Foundation of China(Grant No.51173146)Graduate Starting Seed Fund of Northwestern Polytechnical University(Grant No.z2012158)
文摘This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.