Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique. The results of SEM revealed that the particles diameter was in the range of 50 to 100 nm and the effects on amount of water req...Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique. The results of SEM revealed that the particles diameter was in the range of 50 to 100 nm and the effects on amount of water required at phase inversion point were also discussed.展开更多
Composites were prepared with polysulfone through ex-situ toughening technique. The dynamic parameters of cyanate/epoxy resin were studied by differential scanning calorimetric(DSC) analysis and dynamic mechanical a...Composites were prepared with polysulfone through ex-situ toughening technique. The dynamic parameters of cyanate/epoxy resin were studied by differential scanning calorimetric(DSC) analysis and dynamic mechanical analysis(DMA). Microstructual toughening mechanism was studied through scanning electron microscopy(SEM). The particle microstructure in interlaminar region of composites toughened through ex-situ toughening technique revealed that a reaction induced phase decomposition and phase inversion happened in the interlaminar region. The thermosetting particles were surrounded by the PS phase, which could signifi cantly improve the delamination resistance of composites. The compression after impact(CAI) can be signifi cantly improved from 180 MPa to 260 MPa by using ex-situ toughening while the mechanical properties are not affected.展开更多
基金This project is supported by the Scientific Fund of Polymer Physics Laboratory,Institute of Chemistry,Chinese Academy of Sciences.
文摘Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique. The results of SEM revealed that the particles diameter was in the range of 50 to 100 nm and the effects on amount of water required at phase inversion point were also discussed.
基金Funded by the National Natural Science Foundation of China(51373137)
文摘Composites were prepared with polysulfone through ex-situ toughening technique. The dynamic parameters of cyanate/epoxy resin were studied by differential scanning calorimetric(DSC) analysis and dynamic mechanical analysis(DMA). Microstructual toughening mechanism was studied through scanning electron microscopy(SEM). The particle microstructure in interlaminar region of composites toughened through ex-situ toughening technique revealed that a reaction induced phase decomposition and phase inversion happened in the interlaminar region. The thermosetting particles were surrounded by the PS phase, which could signifi cantly improve the delamination resistance of composites. The compression after impact(CAI) can be signifi cantly improved from 180 MPa to 260 MPa by using ex-situ toughening while the mechanical properties are not affected.