Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
为保证同步相量测量装置(phasor measurement unit,PMU)采集数据的准确应用,须排除其量测值中的异常数据。现有PMU异常数据辨识算法存在算法复杂度高、难以在线更新、多源数据难以校准、依赖多源数据应用难度大等不足。为此,文中从PMU...为保证同步相量测量装置(phasor measurement unit,PMU)采集数据的准确应用,须排除其量测值中的异常数据。现有PMU异常数据辨识算法存在算法复杂度高、难以在线更新、多源数据难以校准、依赖多源数据应用难度大等不足。为此,文中从PMU事件数据和异常数据模型及PMU异常数据判别信息熵定义出发,提出基于该信息熵的异常数据辨识框架。在此框架基础上,基于利用层次方法的平衡迭代规约和聚类(balanced iterative reducing and clustering using hierarchies,BIRCH)算法提出PMU异常数据辨识算法;然后,对所提出的算法进行原型实现,并针对某变电站的PMU采集数据集进行算法实验验证。实验结果表明,与一类支持向量机(one-class support vector machine,OCSVM)算法与间隙统计算法相比,文中算法的准确度及实时性均具有较强的优势。展开更多
基于单一线路两端的监控与数据采集系统(supervisory control and data acquisition system,SCADA)和相量采集装置(phasor measurement unit,PMU)多时段量测信息,建立了5种独立线路的约束最小二乘参数估计模型,其中,量测方程分别由线路...基于单一线路两端的监控与数据采集系统(supervisory control and data acquisition system,SCADA)和相量采集装置(phasor measurement unit,PMU)多时段量测信息,建立了5种独立线路的约束最小二乘参数估计模型,其中,量测方程分别由线路两端有功、无功和电压幅值的SCADA量测、电流与电压相量的PMU量测以及线路两端电压相角差的PMU虚拟量测组合形成,约束方程为参数变量的上下限约束。采用Matlab的lsqnonlin优化函数求解参数估计问题,并基于多条典型线路的模拟量测信息仿真分析了所有模型的适用条件。结果表明,在负荷较重、线路较长条件下,利用所建含PMU量测的4种模型,都可以有效估计出线路的阻抗参数。展开更多
同步相量测量单元(phasor measurements units,PMU)因能测得高精度的同步相量数据而被广泛应用于电力系统中,而传统的监控及数据采集系统(supervisory control and data acquisition,SCADA)是电力系统运行和静态安全监视的基础。文中提...同步相量测量单元(phasor measurements units,PMU)因能测得高精度的同步相量数据而被广泛应用于电力系统中,而传统的监控及数据采集系统(supervisory control and data acquisition,SCADA)是电力系统运行和静态安全监视的基础。文中提出了一种PMU与SCADA数据共存的数学模型用于电力系统状态估计。该模型在保留原有SCADA数据的同时,通过虚拟测量方法对PMU观测范围进行大范围拓展,提高数据冗余度及状态估计的精度。仿真结果表明,该方法具有较高的估计精度,且不受网络拓扑结构和PMU数量限制,适于SCADA和PMU数据共存系统。展开更多
针对传统静态状态估计方法的缺点,提出了一种改进的电力系统状态估计方法,即将部分节点相量测量单元(phasor measurement unit,PMU)量测数据与监控数据采集(supervisory control and data acquisition,SCADA)量测数据融合进行电力系统...针对传统静态状态估计方法的缺点,提出了一种改进的电力系统状态估计方法,即将部分节点相量测量单元(phasor measurement unit,PMU)量测数据与监控数据采集(supervisory control and data acquisition,SCADA)量测数据融合进行电力系统的全网状态估计。该方法简化了系统的雅可比矩阵,缩短了计算时间。文章研究了PMU和SCADA系统融合改进后的快速分解法,针对SCADA量测数据的缺点,通过历史数据库对潮流数据进行预测,并依据PMU量测量对系统进行分析,继而进行系统全网状态的动态监测。通过算例证明,与传统的估计方法相比,该方法改善了状态估计的精确性,减少了迭代次数,细致地描绘了电网状态的变化过程,为调度中心下一步的决策提供了依据。展开更多
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
文摘为保证同步相量测量装置(phasor measurement unit,PMU)采集数据的准确应用,须排除其量测值中的异常数据。现有PMU异常数据辨识算法存在算法复杂度高、难以在线更新、多源数据难以校准、依赖多源数据应用难度大等不足。为此,文中从PMU事件数据和异常数据模型及PMU异常数据判别信息熵定义出发,提出基于该信息熵的异常数据辨识框架。在此框架基础上,基于利用层次方法的平衡迭代规约和聚类(balanced iterative reducing and clustering using hierarchies,BIRCH)算法提出PMU异常数据辨识算法;然后,对所提出的算法进行原型实现,并针对某变电站的PMU采集数据集进行算法实验验证。实验结果表明,与一类支持向量机(one-class support vector machine,OCSVM)算法与间隙统计算法相比,文中算法的准确度及实时性均具有较强的优势。
文摘基于单一线路两端的监控与数据采集系统(supervisory control and data acquisition system,SCADA)和相量采集装置(phasor measurement unit,PMU)多时段量测信息,建立了5种独立线路的约束最小二乘参数估计模型,其中,量测方程分别由线路两端有功、无功和电压幅值的SCADA量测、电流与电压相量的PMU量测以及线路两端电压相角差的PMU虚拟量测组合形成,约束方程为参数变量的上下限约束。采用Matlab的lsqnonlin优化函数求解参数估计问题,并基于多条典型线路的模拟量测信息仿真分析了所有模型的适用条件。结果表明,在负荷较重、线路较长条件下,利用所建含PMU量测的4种模型,都可以有效估计出线路的阻抗参数。
文摘同步相量测量单元(phasor measurements units,PMU)因能测得高精度的同步相量数据而被广泛应用于电力系统中,而传统的监控及数据采集系统(supervisory control and data acquisition,SCADA)是电力系统运行和静态安全监视的基础。文中提出了一种PMU与SCADA数据共存的数学模型用于电力系统状态估计。该模型在保留原有SCADA数据的同时,通过虚拟测量方法对PMU观测范围进行大范围拓展,提高数据冗余度及状态估计的精度。仿真结果表明,该方法具有较高的估计精度,且不受网络拓扑结构和PMU数量限制,适于SCADA和PMU数据共存系统。
文摘针对传统静态状态估计方法的缺点,提出了一种改进的电力系统状态估计方法,即将部分节点相量测量单元(phasor measurement unit,PMU)量测数据与监控数据采集(supervisory control and data acquisition,SCADA)量测数据融合进行电力系统的全网状态估计。该方法简化了系统的雅可比矩阵,缩短了计算时间。文章研究了PMU和SCADA系统融合改进后的快速分解法,针对SCADA量测数据的缺点,通过历史数据库对潮流数据进行预测,并依据PMU量测量对系统进行分析,继而进行系统全网状态的动态监测。通过算例证明,与传统的估计方法相比,该方法改善了状态估计的精确性,减少了迭代次数,细致地描绘了电网状态的变化过程,为调度中心下一步的决策提供了依据。