Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simula...Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.展开更多
In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)...In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy.展开更多
In this paper,we construct efficient schemes based on the scalar auxiliary variable block-centered finite difference method for the modified phase field crystal equation,which is a sixth-order nonlinear damped wave eq...In this paper,we construct efficient schemes based on the scalar auxiliary variable block-centered finite difference method for the modified phase field crystal equation,which is a sixth-order nonlinear damped wave equation.The schemes are linear,conserve mass and unconditionally dissipate a pseudo energy.We prove rigorously second-order error estimates in both time and space for the phase field variable in discrete norms.We also present some numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy.展开更多
Over the past decades, topological interface states have attracted significant attention in classical wave systems. Generally, research on the topological interface states of elastic waves is conducted in the lattices...Over the past decades, topological interface states have attracted significant attention in classical wave systems. Generally, research on the topological interface states of elastic waves is conducted in the lattices with symmetric elements. This paper proposes composite lattices with/without symmetric elements, and demonstrates the realization of tunable topological interface states of elastic waves via parametric systems.To quantize the topological characteristics of the bands, a modified Zak phase is defined to calculate the topological invariant by the eigenstates for the lattices with/without symmetric elements. The numerical results show that the tunable frequencies of topological interface states can be realized in composite lattices with/without symmetric elements through the modulation of the parametric excitation frequency. The tunable topological interface states can be introduced into the vibration energy harvesting to design efficient and steady energy harvesting systems.展开更多
Extraction and separation of yttrium in chloride medium using tri-n-octylmethylammonium(2-sec-octylphenoxy) acetate([N(1888)][SOPAA]) as an extractant were studied in this article. Tri-n-butyl phosphate(TBP) w...Extraction and separation of yttrium in chloride medium using tri-n-octylmethylammonium(2-sec-octylphenoxy) acetate([N(1888)][SOPAA]) as an extractant were studied in this article. Tri-n-butyl phosphate(TBP) was used as a phase modifier to accelerate phase separation and improve the stability of organic phase. The addition of TBP contributed to shortening phase separation time, increasing extraction capacity of rare earth elements(REEs) and decreasing viscosity of organic phase. The slope analysis method and infrared spectroscopy were conducted to investigate the ion-association extraction mechanisms. Extraction and stripping performances of the different systems were also compared. The article showed that the extraction performance of mixed [N(1888)][SOPAA] and TBP is superior to that of [N(1888)][SOPAA] for heavy rare earth element(HREE).展开更多
基金The Key Technology Program,the Ministry of Education of China under contract No.104061
文摘Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.
基金Research of R.Guo is supported by NSFC grant No.11601490Research of Y.Xu is supported by NSFC grant No.11371342,11626253,91630207.
文摘In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy.
基金supported by National Natural Science Foundation of China(Grant Nos.11901489 and 11971407)supported by National Science Foundation of USA(Grant No.DMS-1720442)。
文摘In this paper,we construct efficient schemes based on the scalar auxiliary variable block-centered finite difference method for the modified phase field crystal equation,which is a sixth-order nonlinear damped wave equation.The schemes are linear,conserve mass and unconditionally dissipate a pseudo energy.We prove rigorously second-order error estimates in both time and space for the phase field variable in discrete norms.We also present some numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy.
基金Project supported by the National Natural Science Foundation of China (Nos. 62188101 and 11902097)。
文摘Over the past decades, topological interface states have attracted significant attention in classical wave systems. Generally, research on the topological interface states of elastic waves is conducted in the lattices with symmetric elements. This paper proposes composite lattices with/without symmetric elements, and demonstrates the realization of tunable topological interface states of elastic waves via parametric systems.To quantize the topological characteristics of the bands, a modified Zak phase is defined to calculate the topological invariant by the eigenstates for the lattices with/without symmetric elements. The numerical results show that the tunable frequencies of topological interface states can be realized in composite lattices with/without symmetric elements through the modulation of the parametric excitation frequency. The tunable topological interface states can be introduced into the vibration energy harvesting to design efficient and steady energy harvesting systems.
基金Project supported by‘Hundreds Talents Program’from Chinese Academy of SciencesNational Natural Science Foundation of China(21571179)+1 种基金Science and Technology Major Project of the Fujian Province,China(2015HZ0101)Xiamen Universities,Research Institutions Jointing Enterprise Projects(3502Z20152009)
文摘Extraction and separation of yttrium in chloride medium using tri-n-octylmethylammonium(2-sec-octylphenoxy) acetate([N(1888)][SOPAA]) as an extractant were studied in this article. Tri-n-butyl phosphate(TBP) was used as a phase modifier to accelerate phase separation and improve the stability of organic phase. The addition of TBP contributed to shortening phase separation time, increasing extraction capacity of rare earth elements(REEs) and decreasing viscosity of organic phase. The slope analysis method and infrared spectroscopy were conducted to investigate the ion-association extraction mechanisms. Extraction and stripping performances of the different systems were also compared. The article showed that the extraction performance of mixed [N(1888)][SOPAA] and TBP is superior to that of [N(1888)][SOPAA] for heavy rare earth element(HREE).