In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective da...In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective dark energy behaving like perfect fluid, and suggest that there are interactions between pressureless matter as well as dark energy. We construct the corresponding autonomous system of equations to check the stability of the model for non phantom, vacuum and phantom phases. It is concluded that critical points remain more stable in phantom phase as compared to non phantom and vacuum cases. Finaily, we discuss the cosmological behavior of the model through some cosmological parameters.展开更多
This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the at...This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom-surface distance d. There exists a critical atom-surface distance dc = 1586 a.u. When the atom-surface distance d is larger than the critical distance de, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces.展开更多
文摘In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective dark energy behaving like perfect fluid, and suggest that there are interactions between pressureless matter as well as dark energy. We construct the corresponding autonomous system of equations to check the stability of the model for non phantom, vacuum and phantom phases. It is concluded that critical points remain more stable in phantom phase as compared to non phantom and vacuum cases. Finaily, we discuss the cosmological behavior of the model through some cosmological parameters.
基金supported by the National Natural Science Foundation of China (Grant No. 10774093)the Natural Science Foundation of Shandong Province (Grant No. ZR2009FZ006)
文摘This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom-surface distance d. There exists a critical atom-surface distance dc = 1586 a.u. When the atom-surface distance d is larger than the critical distance de, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces.