The tide level displays information about the state of the sea current and the tidal motion. The tide level of the southern coast of Japan Island is affected strongly by Kuroshio Current flowing in the western part of...The tide level displays information about the state of the sea current and the tidal motion. The tide level of the southern coast of Japan Island is affected strongly by Kuroshio Current flowing in the western part of North Pacific Ocean. When Kuroshio takes the straight path and flow along the Japan Islands, the tide level increases, and it is calculated from two tide level data observed at Kushimoto and Uragami in the southern part of Kii Peninsula. In contrast, the tide level decreases at the time when Kuroshio leaves from the Japan Islands. In this paper, the hourly tidal data are analyzed using the Autocorrelation Function (ACF) and the Mutual Information (MI) and the phase trajectories at first. We classify the results into 5 types of tidal motion. Each categorized type is investigated and characterized precisely using the mean tide level and the unit root test (ADF test) next. The frequency of the type having unstable tidal motion increases when the Kuroshio Current is non-meandering or in a transition state or the tide level is high, and the type shows a non-stationary process. On the other hand, when the Kuroshio Current meanders, the tidal motion tends to take a periodical and stable state and the motion is a stationary process. Though it is not frequent, we also discover a type of stationary and irregular tidal motion.展开更多
Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode an...Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode and C–P stretching vibrational mode,it is found that the effects of H–C stretching vibrational mode on vibrational dynamic features of the HCP integrable system are significant and regularly vary with Polyad numbers(P number).The geometrical profiles of the dynamic potentials and the corresponding fixed points are sensitive to the variation of H–C stretching vibrational strength when P numbers are small,but are not sensitive when P numbers become larger and the corresponding threshold values become lower.The phase space trajectories of different energy levels in a designated dynamic potential(P=28)were studied and the results indicated that the dynamic potentials govern the various dynamic environments in which the vibrational states lie.Furthermore,action integrals of the energy levels contained in dynamic potential(P=28)were quantitatively analyzed and elucidated.It was determined that the dynamic environments could be identified by the numerical values of the action integrals of trajectories of phase space,which is equivalent with dynamic potentials.展开更多
The averaging analysis was carried out to study the motion of a quasi axisymmetrical gyrostat under a small magnitude self excited control torque. The common approach to investigating the problem of rigid body rot...The averaging analysis was carried out to study the motion of a quasi axisymmetrical gyrostat under a small magnitude self excited control torque. The common approach to investigating the problem of rigid body rotation under the action of a small torque known in the body frame was described. Using this approach, the problem (Grammel's problem for the case of small torque) that is maintaining the angular velocity of a quasi axisymmetrical gyrostat using a control torque quadratic in the angular velocity was solved.展开更多
Almost all living organisms exhibit autonomic oscillatory activities,which are primarily generated by the rhythmic activities of their neural systems.Several nonlinear oscillator models have been proposed to elucidate...Almost all living organisms exhibit autonomic oscillatory activities,which are primarily generated by the rhythmic activities of their neural systems.Several nonlinear oscillator models have been proposed to elucidate these neural behaviors and subsequently applied to the domain of robot control.However,the oscillation patterns generated by these models are often unpredictable and need to be obtained through parameter search.This study introduces a mathematical model that can be used to analyze multiple neurons connected through fast inhibitory synapses.The characteristic of this oscillator is that its stationary point is stable,but the location of the stationary point changes with the system state.Only through reasonable topology and threshold parameter selection can the oscillation be sustained.This study analyzed the conditions for stable oscillation in two-neuron networks and three-neuron networks,and obtained the basic rules of the phase relationship of the oscillator network established by this model.In addition,this study also introduces synchronization mechanisms into the model to enable it to be synchronized with the sensing pulse.Finally,this study used these theories to establish a robot single leg joint angle generation system.The experimental results showed that the simulated robot could achieve synchronization with human motion,and had better control effects compared to traditional oscillators.展开更多
Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are ...Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction noise follows a "convergence-stability-divergence" pattern during the friction process. The friction noise attractor begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic evolution of this attractor can help identify wear state changes from the running-in process to the steady and increasing friction processes.展开更多
The 5-DOF vehicle model employs the classical tire-slip-angle model to elicit the stability characteristics in vehicle handling during chaotic motion.However,the energy is not conserved,and the simulation results do n...The 5-DOF vehicle model employs the classical tire-slip-angle model to elicit the stability characteristics in vehicle handling during chaotic motion.However,the energy is not conserved,and the simulation results do not match actual behavior in that the vehicle should stop having lost balance.We have analyzed the limitations of the classical tire-slip-angle equation,and developed another model,which can be applied to all conditions.To ensure the correct use of the Pacejka’s magic formula for vehicle dynamics,we discuss the differences in tire axis systems between the ISO and adapted SAE(Pacejka),and propose a transformation method relating the two different tire axis systems.Finally,simulations are described that are performed in accordance with the established 5-DOF vehicle system dynamics model.The simulation results show that all states returned to the stable region after the vehicle had lost balance.The process involved energy dissipation,and approaches the response actually experienced.The limitations of the classical tire-slip-angle model are fully displayed and the effectiveness of the proposed slip angle model is demonstrated in unsteady vehicle states.展开更多
The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical ...The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical analysis.Then,some of its basic dynamical properties,such as characteristic eigenvalues,Lyapunov exponents and phase trajectories are studied by varying the values of system parameters.It is found that when the values of the system parameters are smaller,the PMSM operates in stable domains,no matter what the values of control gains are.With the values of parameters increasing,the unstability appears and PMSM falls into chaotic operation.Furthermore,the complex dynamic behaviors are verified by means of simulation.展开更多
The effects of pressure oscillation on aerodynamic characteristics in an aero-engine combustor are investigated. A combustor test rig is designed to simulate the pressure drop characteristics of a practical annular co...The effects of pressure oscillation on aerodynamic characteristics in an aero-engine combustor are investigated. A combustor test rig is designed to simulate the pressure drop characteristics of a practical annular combustor. The pressure drop characteristics are firstly measured under atmosphere condition with non-reacting flow(or cold flow), and the air mass flow proportion of each component(dome/liner) are obtained;these properties are base lines for comparison with combustion state. The combustion tests are then carried out under conditions of inlet temperature 340–450 K, fuel air ratio 0.010–0.028. The stability map and the oscillation frequencies are obtained in the tests, the results show that pressure oscillation amplitude increases with the increase of fuel air ratio. Phase trajectory reconstruction is applied to classify the pressure oscillation motion;there are three motions captured in the tests including: ‘‘disk", ‘‘ring" and ‘‘cluster". The pressure drops across the dome under strong pressure oscillation are distinctly divergent from the cold flow, and the changes of pressure drops are mainly affected by pressure oscillation amplitude, but is less influenced by pressure oscillation motion nor oscillation frequencies. Based on the mass flow conservation, the reduction of effective flow area of combustor under strong pressure oscillation is demonstrated. Liner wall temperatures are analyzed through Multiple Linear Regression(MLR)method to estimate the reduction of the air mass flow proportion of the liner cooling under strong pressure oscillation. Finally, the air mass flow proportions of each component under strong pressure oscillation are estimated, the results show that the pressure oscillation motion also has influence on air mass flow proportion.展开更多
文摘The tide level displays information about the state of the sea current and the tidal motion. The tide level of the southern coast of Japan Island is affected strongly by Kuroshio Current flowing in the western part of North Pacific Ocean. When Kuroshio takes the straight path and flow along the Japan Islands, the tide level increases, and it is calculated from two tide level data observed at Kushimoto and Uragami in the southern part of Kii Peninsula. In contrast, the tide level decreases at the time when Kuroshio leaves from the Japan Islands. In this paper, the hourly tidal data are analyzed using the Autocorrelation Function (ACF) and the Mutual Information (MI) and the phase trajectories at first. We classify the results into 5 types of tidal motion. Each categorized type is investigated and characterized precisely using the mean tide level and the unit root test (ADF test) next. The frequency of the type having unstable tidal motion increases when the Kuroshio Current is non-meandering or in a transition state or the tide level is high, and the type shows a non-stationary process. On the other hand, when the Kuroshio Current meanders, the tidal motion tends to take a periodical and stable state and the motion is a stationary process. Though it is not frequent, we also discover a type of stationary and irregular tidal motion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505027 and 11104156)the Open Foundation of Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation(Grant No.JXMS201605)+1 种基金the Science and Technology Project of Education Department of Jiangxi Province in2016the National High Technology Research and Development Program of China(Grant No.2014AA052701)
文摘Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode and C–P stretching vibrational mode,it is found that the effects of H–C stretching vibrational mode on vibrational dynamic features of the HCP integrable system are significant and regularly vary with Polyad numbers(P number).The geometrical profiles of the dynamic potentials and the corresponding fixed points are sensitive to the variation of H–C stretching vibrational strength when P numbers are small,but are not sensitive when P numbers become larger and the corresponding threshold values become lower.The phase space trajectories of different energy levels in a designated dynamic potential(P=28)were studied and the results indicated that the dynamic potentials govern the various dynamic environments in which the vibrational states lie.Furthermore,action integrals of the energy levels contained in dynamic potential(P=28)were quantitatively analyzed and elucidated.It was determined that the dynamic environments could be identified by the numerical values of the action integrals of trajectories of phase space,which is equivalent with dynamic potentials.
文摘The averaging analysis was carried out to study the motion of a quasi axisymmetrical gyrostat under a small magnitude self excited control torque. The common approach to investigating the problem of rigid body rotation under the action of a small torque known in the body frame was described. Using this approach, the problem (Grammel's problem for the case of small torque) that is maintaining the angular velocity of a quasi axisymmetrical gyrostat using a control torque quadratic in the angular velocity was solved.
基金supported in part by the National Nature Science Foudation under Grant 62333023in part by the Key Research and Development Program of Zhejiang Province under Grant 2021C03050in part by the Scientific Research Project of Agriculture and Social Development of Hangzhou under Grant 20212013B11.
文摘Almost all living organisms exhibit autonomic oscillatory activities,which are primarily generated by the rhythmic activities of their neural systems.Several nonlinear oscillator models have been proposed to elucidate these neural behaviors and subsequently applied to the domain of robot control.However,the oscillation patterns generated by these models are often unpredictable and need to be obtained through parameter search.This study introduces a mathematical model that can be used to analyze multiple neurons connected through fast inhibitory synapses.The characteristic of this oscillator is that its stationary point is stable,but the location of the stationary point changes with the system state.Only through reasonable topology and threshold parameter selection can the oscillation be sustained.This study analyzed the conditions for stable oscillation in two-neuron networks and three-neuron networks,and obtained the basic rules of the phase relationship of the oscillator network established by this model.In addition,this study also introduces synchronization mechanisms into the model to enable it to be synchronized with the sensing pulse.Finally,this study used these theories to establish a robot single leg joint angle generation system.The experimental results showed that the simulated robot could achieve synchronization with human motion,and had better control effects compared to traditional oscillators.
基金supported by the National Natural Science Foundation of China(Grant No.51375480)the Graduate Scientific Research Innovation Projects of Jiangsu Higher Education Institutions(Grant No.KYLX16_0527)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction noise follows a "convergence-stability-divergence" pattern during the friction process. The friction noise attractor begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic evolution of this attractor can help identify wear state changes from the running-in process to the steady and increasing friction processes.
基金This research is supported by the project of National Science Foundation China(Grant No.51475199).
文摘The 5-DOF vehicle model employs the classical tire-slip-angle model to elicit the stability characteristics in vehicle handling during chaotic motion.However,the energy is not conserved,and the simulation results do not match actual behavior in that the vehicle should stop having lost balance.We have analyzed the limitations of the classical tire-slip-angle equation,and developed another model,which can be applied to all conditions.To ensure the correct use of the Pacejka’s magic formula for vehicle dynamics,we discuss the differences in tire axis systems between the ISO and adapted SAE(Pacejka),and propose a transformation method relating the two different tire axis systems.Finally,simulations are described that are performed in accordance with the established 5-DOF vehicle system dynamics model.The simulation results show that all states returned to the stable region after the vehicle had lost balance.The process involved energy dissipation,and approaches the response actually experienced.The limitations of the classical tire-slip-angle model are fully displayed and the effectiveness of the proposed slip angle model is demonstrated in unsteady vehicle states.
基金Supported by the Key Program of National Natural Science Foundation of China under Grant No. 50937001the National Natural Science Foundation of China under Grant Nos. 10947011,11262004,61263021,and 50877028
文摘The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical analysis.Then,some of its basic dynamical properties,such as characteristic eigenvalues,Lyapunov exponents and phase trajectories are studied by varying the values of system parameters.It is found that when the values of the system parameters are smaller,the PMSM operates in stable domains,no matter what the values of control gains are.With the values of parameters increasing,the unstability appears and PMSM falls into chaotic operation.Furthermore,the complex dynamic behaviors are verified by means of simulation.
文摘The effects of pressure oscillation on aerodynamic characteristics in an aero-engine combustor are investigated. A combustor test rig is designed to simulate the pressure drop characteristics of a practical annular combustor. The pressure drop characteristics are firstly measured under atmosphere condition with non-reacting flow(or cold flow), and the air mass flow proportion of each component(dome/liner) are obtained;these properties are base lines for comparison with combustion state. The combustion tests are then carried out under conditions of inlet temperature 340–450 K, fuel air ratio 0.010–0.028. The stability map and the oscillation frequencies are obtained in the tests, the results show that pressure oscillation amplitude increases with the increase of fuel air ratio. Phase trajectory reconstruction is applied to classify the pressure oscillation motion;there are three motions captured in the tests including: ‘‘disk", ‘‘ring" and ‘‘cluster". The pressure drops across the dome under strong pressure oscillation are distinctly divergent from the cold flow, and the changes of pressure drops are mainly affected by pressure oscillation amplitude, but is less influenced by pressure oscillation motion nor oscillation frequencies. Based on the mass flow conservation, the reduction of effective flow area of combustor under strong pressure oscillation is demonstrated. Liner wall temperatures are analyzed through Multiple Linear Regression(MLR)method to estimate the reduction of the air mass flow proportion of the liner cooling under strong pressure oscillation. Finally, the air mass flow proportions of each component under strong pressure oscillation are estimated, the results show that the pressure oscillation motion also has influence on air mass flow proportion.