期刊文献+
共找到633篇文章
< 1 2 32 >
每页显示 20 50 100
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing 被引量:1
1
作者 Wen Zhou Xueyang Shen +2 位作者 Xiaolong Yang Jiangjing Wang Wei Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期2-27,共26页
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I... In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms. 展开更多
关键词 nanofabrication silicon photonics phase-change materials non-volatile photonic memory neuromorphic photonic computing
下载PDF
Research on microcapsules of phase change materials 被引量:8
2
作者 DAI Xia SHEN Xiaodong 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期393-399,共7页
Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule te... Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics. 展开更多
关键词 phase change material microcapsule phase change material surface polymerization PREPARATION
下载PDF
Universal memory based on phase-change materials:From phase-change random access memory to optoelectronic hybrid storage 被引量:2
3
作者 Bo Liu Tao Wei +5 位作者 Jing Hu Wanfei Li Yun Ling Qianqian Liu Miao Cheng Zhitang Song 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期128-149,共22页
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,... The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well. 展开更多
关键词 universal memory optoelectronic hybrid storage phase-change material phase-change random access memory
下载PDF
Preparation of Microcapsules Containing Triple Core Materials with Interfacial Condensation Reaction
4
作者 Yoshinari Taguchi Mikihiko Aoki Masato Tanaka 《Journal of Cosmetics, Dermatological Sciences and Applications》 2014年第4期275-283,共9页
In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water... In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water droplets as the third core material by the interfacial condensation reaction between hydroxyl propyl methyl cellulose and tannic acid. The interfacial condensation reaction was performed between hydroxyl propyl methyl cellulose dissolved in the continuous water phase and tannic acid dissolved in the inner fine water droplets as the third core material. The calcium chloride powder as the second core material was dispersed in the α-tocopherol oil droplet as the first core material beforehand. The α-tocopherol oil containing the second and the third core materials was dispersed in the continuous water phase to form the [(S + W)/O/W] emulsion. The α-tocopherol oil as the first core material was microencapsulated satisfactorily and the contents of the second core material were increased with the concentration of stearic acid as the oil soluble stabilizer. The mechanical strength of microcapsules increased with the concentration of hydroxyl propyl methyl cellulose. Thermal energy could be released by breaking the microcapsules in water and by dissolving calcium chloride in the continuous water phase. 展开更多
关键词 TRIPLE Core materials-Containing-microcapsule Multiple Emulsions Α-TOCOPHEROL Calcium Chloride Dissolution Heat HYDROXY Propyl Methyl Cellulose Tannic Acid
下载PDF
Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System 被引量:2
5
作者 Wei Kang Yiqiang Zhao +3 位作者 Xueheng Jia Lin Hao Leping Dang Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2021年第1期55-63,共9页
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic... A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature. 展开更多
关键词 Lithium-ion battery phase-change material PARAFFIN Silicon carbide Thermal runaway
下载PDF
Design of broadband achromatic metasurface device based on phase-change material Ge_(2)Sb_(2)Te_(5) 被引量:1
6
作者 Shuyuan Lv Xinhui Li +1 位作者 Wenfeng Luo Jie Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期259-265,共7页
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a... Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems. 展开更多
关键词 metasurface optical device phase-change material ACHROMATIC
下载PDF
An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 被引量:1
7
作者 Qing Hu Boyi Dong +5 位作者 Lun Wang Enming Huang Hao Tong Yuhui He Ming Xu Xiangshui Miao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期49-54,共6页
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu... Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition. 展开更多
关键词 superlattice-like phase-change material artificial synapse low-power consumption
下载PDF
Melting and Solidification Heat Transfer Characteristics of a Phase-Change Material in a Latent Heat Storage Vessel: Effects of a Perforated Partition Plate and Metal Fiber
8
作者 Than Tun Naing Akihiko Horibe +1 位作者 Naoto Haruki Yutaka Yamada 《Journal of Power and Energy Engineering》 2017年第8期13-29,共17页
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ... Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM. 展开更多
关键词 Heat Storage VESSEL SOLIDIFIED Height phase-change material (PCM) Mixture Perforated PARTITION PLATE Metal Fiber
下载PDF
Photothermal phase change material microcapsules via cellulose nanocrystal and graphene oxide co-stabilized Pickering emulsion for solar and thermal energy storage
9
作者 Wang Sun Zhe Zhang +10 位作者 Zhen Zhang Nisha He Qiang Wei Liu Feng Zhenghao Wang Jie Wu Can Liu Shiyu Fu Yelin Hou Gilles Sebe Guofu Zhou 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3225-3235,共11页
Phase change materials(PCMs)have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions.However,their widespread application is r... Phase change materials(PCMs)have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions.However,their widespread application is restricted by leakage issues.Encapsulating PCMs within polymeric microcapsules is a promising strategy to prevent leakage and increase heat transfer area with matrices.Moreover,photothermal PCM microcapsules are particularly desirable for solar energy storage.Herein,we fabricated photothermal PCM microcapsules with melamine-formaldehyde resin(MF)as shell using cellulose nanocrystal(CNC)and graphene oxide(GO)co-stabilized Pickering emulsion droplets as templates.CNC displays outstanding Pickering emulsifying ability and can facilitate the fixation of GO at the oil-water interface,resulting in a stable CNC/GO co-stabilized PCM Pickering emulsion.A polydopamine(PDA)layer was coated in-situ on the emulsion droplets via oxidization self-polymerization of dopamine.Meanwhile,GO was reduced to reduced GO(rGO)due to the reducing ability of PDA.The outmost MF shell of the PCM microcapsules was formed in-situ through the polymerization and crosslinking of MF prepolymer.The resulted PCM@CNC/rGO/PDA/MF microcapsules exhibit uniform sizes in the micrometer range,excellent leakage-proof performance,high phase change enthalpy(175.4 J g^(−1))and PCM encapsulation content(84.2%).Moreover,the presence of rGO and PDA endows PCM@CNC/rGO/PDA/MF microcapsules with outstanding photothermal conversion performance.The temperature of PCM@CNC/rGO/PDA/MF microcapsule slurries(15wt.%)can reach 73°C after light irradiation at 1 W cm^(−2).Therefore,photothermal PCM@CNC/rGO/PDA/MF microcapsules are promising for solar energy harvesting,thermal energy storage,and release in various applications,such as energy-efficient buildings and smart textiles. 展开更多
关键词 graphene oxide cellulose nanocrystal Pickering emulsion phase change material microcapsule PHOTOTHERMAL
原文传递
Preparation and Characterization of Poly(melamine-urea-formaldehyde) Tetradecanol Microcapsules Coated with Silver Particles 被引量:3
10
作者 WANG Haiping GUI Pengce +1 位作者 ZHU Yangqian HU Siqian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期327-334,共8页
A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization me... A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization method followed by silver reduction.Fourier-transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy with energy dispersive X-ray spectrometry(SEM/EDS),thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)were used to characterize the chemical structure,morphology and thermal properties of the as-prepared silver-coated microPCMs.FTIR analysis confirmed the successful encapsulation of TD with MUF wall materials.The SEM and EDS results indicated that the prepared silver-coated MUF microPCMs exhibited uniform spherical shape with a perfect silver outer layer.From XRD analysis,the Ag metal dispersed on the surface of microcapsules presented the form of elementary substance.The deposition weight of silver particles on the microcapsule surface increased with increasing the amount of silver nitrate,as indicated by EDS tests.The DSC results indicated that the melting temperature and the melting latent heat of microPCMs modified with 0.7g of silver nitrate in 150mL aqueous solution were 39.2°C and 126.6J·g^-1,respectively.Supercooling of the microPCMs coated with silver particles was effectively suppressed,compared with that of microPCMs without Ag.Thus,the encapsulation of TD with silver-coated MUF shell developed by this work can be an effective method to prepare the microPCMs with enhanced thermal transfer performance and phase change properties. 展开更多
关键词 phase change materials microcapsule 1-tetradecanol SILVER metal coating
下载PDF
The Application of Microcapsule in the Infrared Stealth Camouflage 被引量:1
11
作者 ZHANG Juan LIU Bo-yu +1 位作者 LIU Bei WANG Yao 《青岛大学学报(自然科学版)》 CAS 2018年第B09期19-22,共4页
Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of inf... Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology. 展开更多
关键词 PCM (phase-change material) microcapsule INFRARED STEALTH
下载PDF
Electrochemical behavior of different shelled microcapsule composite copper coatings 被引量:1
12
作者 Xiu-qing Xu Yan-hong Guo Wei-ping Li Li-qun Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第3期377-384,共8页
Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion... Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics. 展开更多
关键词 composite coatings shell materials copper microcapsuleS electrochemical properties corrosion resistance ELECTRODEPOSITION
下载PDF
Characteristics of Self-Healing Microcapsules for Cementitious Composites 被引量:1
13
作者 MAO Qianjin FENG Xiaojuan +4 位作者 LIANG Peng WANG Rui WANG Ziming CUI Suping LAN Mingzhang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1108-1112,共5页
Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the mic... Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the microcapsules was observed by optical microscopy and scanning electron microscopy(SEM). Chemical structure was characterized by Fourier transform infrared spectroscopy(FTIR). Thermal stability was obtained using simultaneous thermal analysis(STA). The microcapsules were composed of urea-formaldehyde resin shell and epoxy resin core. Emulsifier played an important role in the polymerization process when the core material was packed by pre-polymer, so the effects of different emulsifiers(OP-10, SDS and SDBS) were discussed respectively. Results showed that the particle size of the microcapsules was uniform when SDBS as an emulsifier. Microcapsules showed good thermal stability below 240 ℃ and the initial decomposition temperature of the microcapsules was 265 ℃. The core materials released after microcapsules rupturing, which could be proven by the images of SEM. When implanted in cementitious composites, complete shape of microcapsules and good interface between microcapsules and cement specimen substrate could also be observed. 展开更多
关键词 cementitious composites self-healing materials microcapsule
下载PDF
Preparation of Microcapsules Containing Erythritol with Interfacial Polycondensation Reaction by Using the (W/O) Emulsion 被引量:1
14
作者 Yasuhito Hayashi Kiyomi Fuchigami +1 位作者 Yoshinari Taguchi Masato Tanaka 《Journal of Encapsulation and Adsorption Sciences》 2014年第4期132-141,共10页
It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experimen... It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experiment, toluene diisocyanate, diphenyl methane diisocyanate and hexamethylenediisocyanate were used to form the polyurethane shell and the effects of them on the heat storage density and the microencapsulation efficiency were investigated. Furthermore, the effect of supercooling prevention agent on the phase change behavior of erythritol was investigated. The microcapsules prepared with toluendiisocyanate monomer showed the highest heat storage density and the higher microencapsulation efficiency. Considerable supercooling phenomenon in the microcapsule was observed and prevented to a certain degree by addition of potassium dihydrogen phosphate and calcium sulfate as the supercooling prevention agent. 展开更多
关键词 Phase Change material ERYTHRITOL POLYURETHANE microcapsuleS LATENT Heat Storage Super Cooling Prevention Agent
下载PDF
Research Status and Development Direction of Smart Clothing Materials 被引量:1
15
作者 LI Xiaolei SHAN Yufu +1 位作者 QIAN Xiaoming SHI Yunlong 《Journal of Donghua University(English Edition)》 CAS 2022年第5期511-518,共8页
With the continuous development of technology and society, smart devices have filled people’s lives and become an indispensable part of people’s lives. At the same time, smart clothing has also been greatly develope... With the continuous development of technology and society, smart devices have filled people’s lives and become an indispensable part of people’s lives. At the same time, smart clothing has also been greatly developed. This article introduces several smart clothing materials, analyzes the current research status of smart clothing materials, and further discusses the applications of smart clothing materials in military, medical, intelligent decoration, and sports and leisure fields. Then the problems of smart clothing in safety, environmental protection, and industrial technology are analyzed, and the corresponding solutions to these problems are proposed, so as to provide reference and guidance for the future development of smart clothing in China. And the research shows that smart clothing will develop in the direction of fashion and diversification, function and comfort, safety and environmental protection, convenience and low cost in the future. 展开更多
关键词 smart clothing material shape memory fiber military application waterproof and moisture permeability microcapsule technology
下载PDF
Preparation and characterization of silica microcapsules containing butyl-stearate via sol-gel method 被引量:1
16
作者 缪春燕 姚有为 +1 位作者 唐国翌 翁端 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期1018-1021,共4页
For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in mic... For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in microns are formed by emulsifying an organic phase consisting of butyl-stearate as core material. The silica shell was formed via hydrolysis and condensation from tetraethyl silicate with acetate as catalyst. The SEM photographs show the particles possess spherical morphology and core-shell structure. The as-prepared silica microcapsules mainly consist of microsphere in the diameter of 3-7 μm and the median diameter of these microcapsules equals to 5.2 μm. The differential scanning calorimetry(DSC) curves indicate that the latent heat and the melting point of microcapsules are 86 J/g and 22.6 ℃,respectively. The results of DSC and TG further testify the microcapsules with core-shell structure. 展开更多
关键词 二氧化硅微囊体 溶胶-凝胶法 硬脂酸丁酯 相变材料
下载PDF
Preparation and Characterization of Poly(divinylbenzene) Microcapsules Containing Octadecane
17
作者 Preeyaporn Chaiyasat Amorn Chaiyasat +2 位作者 Waraporn Boontung Supaporn Promdsorn Sutanya Thipsit 《Materials Sciences and Applications》 2011年第8期1007-1013,共7页
Poly(divinylbenzene) (PDVB) microcapsules containing octadecane (OD) (PDVB/OD) used as heat storage material were synthesized by suspension polymerization at 70 Microencapsulation, Microcapsule, Heat Storage Material,... Poly(divinylbenzene) (PDVB) microcapsules containing octadecane (OD) (PDVB/OD) used as heat storage material were synthesized by suspension polymerization at 70 Microencapsulation, Microcapsule, Heat Storage Material, Octadecane, Suspension Polymerization, Poly(Divinylbenzene)C using benzoyl peroxide and polyvinyl alcohol as initiator and stabilizer, respectively. Thermal properties and stability of PDVB/OD microcapsules were determined using differential scanning calorimeter (DSC) and thermogravimetric analyzer. The morphology and structure of microcapsules were characterized by optical microscope, scanning electron microscope and fourier transform infrared spectrophotometer. From DSC analysis, the melting temperature of encapsulated OD (28oC) was almost the same as that of bulk OD (30oC) while it was quite different in the case of the solidification temperature (19oC and 25oC for encapsulated and bulk OD, respectively). The latent heats of melting (184.0 J/g-OD) and solidification (183.2 J/g-OD) of encapsulated OD were reduced from those of bulk OD (241.7 and 247.0 J/g, respectively). However, the prepared PDVB/OD microcapsules are able to be used for heat storage applications. 展开更多
关键词 MICROENCAPSULATION microcapsule Heat Storage material Octadecane Suspension POLYMERIZATION Poly(Divinylbenzene)
下载PDF
Experimental Investigation of a Phase-ChangeMaterial’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds
18
作者 Karim Choubani Ons Ghriss +2 位作者 Nashmi H.Alrasheedi Sirin Dhaoui Abdallah Bouabidi 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期341-358,共18页
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us... Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom. 展开更多
关键词 Smart salt-gradient solar pond phase-change material experimental investigation stability of solar ponds
下载PDF
不同壁材对ARA微胶囊理化性质和稳定性的影响
19
作者 李萌 张芹 +4 位作者 郑舒磊 闵俊宁 高文浩 任皓威 刘宁 《农业工程学报》 EI CAS CSCD 北大核心 2024年第12期295-303,共9页
为了筛选更优的壁材包埋花生四烯酸(arachidonic acid, ARA),该研究以ARA为芯材,乳清蛋白(whey protein, W)、乳清蛋白-葡萄糖浆(whey protein-glucose syrup, WG)和乳清蛋白-葡萄糖浆-乳糖(whey protein-glucose syrup-lactose, WGL)... 为了筛选更优的壁材包埋花生四烯酸(arachidonic acid, ARA),该研究以ARA为芯材,乳清蛋白(whey protein, W)、乳清蛋白-葡萄糖浆(whey protein-glucose syrup, WG)和乳清蛋白-葡萄糖浆-乳糖(whey protein-glucose syrup-lactose, WGL)为壁材制备微胶囊,并对ARA微胶囊的包埋率、含水率、溶解度、堆积密度、休止角、粒径分布、微观形貌和氧化稳定性及热稳定性进行比较分析。结果表明,WGL的包埋率为98.64%,含水率为2.85%,溶解度为89.83%,堆积密度为0.54 g/mL,休止角为35.87°,粒径分布较均匀,其理化性质优于W和WG;表面结构呈完整球形、结构致密,有利于微胶囊的贮藏;采用碘滴定法测定过氧化值,在25和50℃贮藏条件下WGL的过氧化值分别为19.92和32.75 mmol/kg,均显著低于W和WG(P<0.05),表明WGL具有较高的氧化稳定性;由差示扫描量热法和热重法可知WGL的熔解温度和质量保留率最高分别为107℃和27.55%,表明WGL具有良好的热稳定性。综上,WGL的综合性质优于W和WG,表明WGL对ARA有较好的包埋和保护作用,该研究结果对选择合适的壁材包埋ARA微胶囊具有一定的参考意义。 展开更多
关键词 温度 理化性质 稳定性 ARA 微胶囊 壁材
下载PDF
斑蝥黄微胶囊制备工艺参数优化研究
20
作者 周迪 王永奇 +3 位作者 于清华 姚可欣 许新德 白亚龙 《饲料工业》 CAS 北大核心 2024年第22期122-128,共7页
试验旨在探究斑蝥黄微胶囊产品制备的优化工艺参数。通过单因素试验,分析溶剂类别、溶解温度和时间以及微胶囊包埋壁材、乳化剂等因素对微囊化斑蝥黄产品的影响,确定了斑蝥黄最佳溶解工艺条件、微囊化最佳包埋壁材与乳化剂;然后通过正... 试验旨在探究斑蝥黄微胶囊产品制备的优化工艺参数。通过单因素试验,分析溶剂类别、溶解温度和时间以及微胶囊包埋壁材、乳化剂等因素对微囊化斑蝥黄产品的影响,确定了斑蝥黄最佳溶解工艺条件、微囊化最佳包埋壁材与乳化剂;然后通过正交试验分析,针对产品感观质量和稳定性等因素,得出了合理的微囊化斑蝥黄10%冷水溶性(Cold Water Solubility,CWS)产品配方。结果表明:最佳工艺条件是以二氯甲烷作溶剂,溶解温度50℃,瞬时溶解时间少于5 min,且斑蝥黄与二氯甲烷的最佳比值为12∶135。斑蝥黄微囊化过程中最佳包埋壁材为木质素磺酸盐,最佳乳化剂为抗坏血酸棕榈酸酯;产品配方为斑蝥黄12%、DL-α生育酚4.5%、抗坏血酸棕榈酸酯3.5%、大豆磷脂3.0%、木质素磺酸盐35%、麦芽糊精22%、玉米淀粉20%。“瞬时溶解、二次乳化和均质、双重包埋”技术的应用可在很大程度上提高斑蝥黄微胶囊产品的稳定性、水溶性、安全性以及生物利用率。 展开更多
关键词 斑蝥黄 包埋壁材 纳米分散 微胶囊 二次乳化 双重包埋
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部