In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I...In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.展开更多
To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the s...To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction.展开更多
In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on...In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.展开更多
Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of us...Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.展开更多
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ...In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges.展开更多
A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.T...A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.The influence of the over-fired air(OFA)coefficient is examined and the impact of the blending ratio on the boiler operation is explored.The results show that for low blending ratios,a slight increase in the blending ratio can improve the combustion of bituminite,whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency.Enhancing the supporting capability of the secondary air effectively reduces the slagging degree in the bottom ash hopper and improves the burnout rate of coals.For a large-percentage blending case at full load,it is found that the OFA coefficient must be reduced appropriately,otherwise,a secondary high-temperature combustion zone can be generated in the vicinity of the furnace arches,causing high temperature slagging and superheater tube bursting.Considering the influences of combustion and pollutant emissions,the recommended OFA coefficient is 0.2.Blending dried sludge under low loads increases the flue gas temperature at the furnace exit.While reducing the flue gas temperature in the main combustion region,which is beneficial to the safe operation of the denitrification system.Increasing the blending ratio and reducing load lead to an increase in NOx concentration at the furnace exit Sludges with low nitrogen content are suggested for the practical operation of boilers.展开更多
A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type...A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.展开更多
The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers an...The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers and boilers with manual load-ing.The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions,as well as the mass of ash and slag waste.The main pollutants from coal combustion are calculated:particulate matter,benz(a)pyrene,nitrogen oxides,sulfur dioxide,carbon monoxide.Of the greenhouse gases carbon dioxide is calculated.As a result of conducted research it is shown that the simplest preliminary preparation(size-graded)of coal significantly improves combustion efficiency and environmental performance:emissions are reduced by 13%for hard coal and up to 20%for brown coal.The introduction of automated boil-ers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2-3 times.The best environmental indicators correspond to heat-treated lignite,which is characterized by the absence of sulfur dioxide emissions.展开更多
基金the support of the National Natural Science Foundation of China(Grant No.62204201)。
文摘In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.
基金supported by the National Key Research and Development Program of China(2023YFB4005700,2023YFB4005705,and 2023YFB4005702-03)the Academy-Local Cooperation Project of the Chinese Academy of Engineering(2023-DFZD-01)+4 种基金the National Natural Science Foundation of China(52207151)the Natural Science Foundation of Anhui Province(2208085QA29)the University Synergy Innovation Program of Anhui Province(GXXT-2022025)the independent project of the Energy Research Institute of Hefei Comprehensive National Science Center(Anhui Energy Laboratory22KZZ525,23KZS402,22KZS301,and 22KZS304).
文摘To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction.
文摘In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23098).
文摘Faced with the world’s environmental and energy-related challenges,researchers are turning to innovative,sustainable and intelligent solutions to produce,store,and distribute energy.This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond.Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials.This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with(SGSP)and without(SGSPP)paraffin wax(PW)as a phase-change material(PCM).Temperature and salinity were measured experimentally using a smart sensor,with the measurements being used to investigate the stabilizing effects of placing the PCM in the solar pond’s lower convective zone.The experimental results show that the pond with the PCM(SGSPP)achieved greater thermal and salinity stability,with there being a lesser temperature and salinity gradient between the different layers when compared to a solar pond without thePCM(SGSP).The use of the PCM,therefore,helped control the maximum and minimum temperature of the pond’s storage zone.The UCZ has been found to operate approximately 4 degrees above the average ambient temperature of the day in the SGSPP and 7 degrees in SGSP.Moreover,an unstable situation is generated after 5 days from starting the operation and at 1.9 m from the bottom,and certain points have the tendency to be neutral from the upper depths in 1,3 m of the bottom.
文摘In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges.
文摘A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.The influence of the over-fired air(OFA)coefficient is examined and the impact of the blending ratio on the boiler operation is explored.The results show that for low blending ratios,a slight increase in the blending ratio can improve the combustion of bituminite,whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency.Enhancing the supporting capability of the secondary air effectively reduces the slagging degree in the bottom ash hopper and improves the burnout rate of coals.For a large-percentage blending case at full load,it is found that the OFA coefficient must be reduced appropriately,otherwise,a secondary high-temperature combustion zone can be generated in the vicinity of the furnace arches,causing high temperature slagging and superheater tube bursting.Considering the influences of combustion and pollutant emissions,the recommended OFA coefficient is 0.2.Blending dried sludge under low loads increases the flue gas temperature at the furnace exit.While reducing the flue gas temperature in the main combustion region,which is beneficial to the safe operation of the denitrification system.Increasing the blending ratio and reducing load lead to an increase in NOx concentration at the furnace exit Sludges with low nitrogen content are suggested for the practical operation of boilers.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL–ChE–18B03)the Municipal Science and Technology Commission of Tianjin, China (2009ZCKFGX01900)。
文摘A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.
基金The research was carried out under State Assignment Projects(FWEU-2021-0004,FWEU-2021-0005)of the Fundamental Research Program of Russian Federation 2021-2030.
文摘The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation(unscreened,size-graded,briquetted and heat-treated)in automated boilers and boilers with manual load-ing.The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions,as well as the mass of ash and slag waste.The main pollutants from coal combustion are calculated:particulate matter,benz(a)pyrene,nitrogen oxides,sulfur dioxide,carbon monoxide.Of the greenhouse gases carbon dioxide is calculated.As a result of conducted research it is shown that the simplest preliminary preparation(size-graded)of coal significantly improves combustion efficiency and environmental performance:emissions are reduced by 13%for hard coal and up to 20%for brown coal.The introduction of automated boil-ers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2-3 times.The best environmental indicators correspond to heat-treated lignite,which is characterized by the absence of sulfur dioxide emissions.