During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Light-sheet fluorescence microscopy(LSFM)has been widely used to image the three-dimensional(3D)structures and functions of various millimeter-size bio-specimen such as zebrafish.However,the sample adsorption and scat...Light-sheet fluorescence microscopy(LSFM)has been widely used to image the three-dimensional(3D)structures and functions of various millimeter-size bio-specimen such as zebrafish.However,the sample adsorption and scattering cause shading of the light-sheet illumination,preventing the even 3D image of thick samples.Herein,we report a continuous-rotational light-sheet microscope(CR-LSM)that enables simultaneous 3D bright-field and fluorescence imaging.With a high-accuracy rotational stage,CR-LSM records the outline projections and the fluorescent images of the sample at multiple rotation angles.Then,3D morphology and fluorescent structure were reconstructed with a developed algorithm.Using CR-LSM,zebrafish’s whole-fish contour and blood vessel structures were obtained simultaneously.展开更多
The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functiona...The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functionality. These include mitigating interference from magnetic fields and vibrations, which are critical for maintaining the precision and accuracy of the instruments used. This study aims to offer enhanced project management strategies and detailed construction solutions that address the environmental and technical needs specific to electron microscopy labs, thereby facilitating effective lab operations and extending the lifecycle of high-end precision instruments. Case studies of existing laboratory constructions, onsite investigations, and comprehensive reviews of the technical and environmental requirements provide the basis for a best practice for constructing sophisticated electron microscopy labs. The approach integrates both pre-construction planning and post-construction adjustments to create optimal operational environments. The findings suggest that successful lab constructions are those that incorporate thorough onsite assessments, strategic location choices, and the use of advanced construction materials and techniques specifically designed to counteract environmental challenges like magnetic and vibration interferences. Actionable guidelines for both planning and executing the construction of electron microscope labs highlighted in this tutorial are intended as an important resource to troubleshoot or upgrade existing lab facilities and to consult in preparation of future lab construction projects.展开更多
Automatic cell counting provides an effective tool for medical research and diagnosis.Currently,cell counting can be completed by transmitted-light microscope,however,it requires expert knowledge and the counting accu...Automatic cell counting provides an effective tool for medical research and diagnosis.Currently,cell counting can be completed by transmitted-light microscope,however,it requires expert knowledge and the counting accuracy which is unsatisfied for overlapped cells.Further,the image-translation-based detection method has been proposed and the potential has been shown to accomplish cell counting from transmitted-light microscope,automatically and effectively.In this work,a new deep-learning(DL)-based two-stage detection method(cGAN-YOLO)is designed to further enhance the performance of cell counting,which is achieved by combining a DL-based fluorescent image translation model and a DL-based cell detection model.The various results show that cGAN-YOLO can effectively detect and count some different types of cells from the acquired transmitted-light microscope images.Compared with the previously reported YOLO-based one-stage detection method,high recognition accuracy(RA)is achieved by the cGAN-YOLO method,with an improvement of 29.80%.Furthermore,we can also observe that cGAN-YOLO obtains an improvement of 12.11%in RA compared with the previously reported image-translation-based detection method.In a word,cGAN-YOLO makes it possible to implement cell counting directly from the experimental acquired transmitted-light microscopy images with high flexibility and performance,which extends the applicability in clinical research.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the ...In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.展开更多
The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging...The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging technique that allows in vivo evaluation of the skin.Traditional RCM was wide-probe-based,which limited its application on uneven and covered skin.In this study,we report the development of a portable reflectance confocal microscope(PRCM)in which all components were assembled in a handheld shell.Although the size and weight of the PRCM were reduced based on the use of a microelectromechanical system,the resolution was kept at 0.91μm,and the field of view of the system was 343μm×532μm.When used in vivo,the PRCM was able to visualize cellular and nuclear morphology for both mouse and human skin.PRCM evaluations were then performed on wounds after topically applied mesenchymal stem cells(MSCs)or saline treatment.The PRCM allowed visualization of the formation of collagen bundles,re-epithelization from the wound edge to the wound bed,and hair follicle regeneration,which were consistent with histological evaluations.Therefore,we offer new insights into monitoring the effects of topically applied MSCs on the process of wound healing by using PRCM.This study illustrates that the newly developed PRCM represents a promising device for real-time,noninvasive monitoring of the dynamic process of wound healing,which demonstrates its potential to diagnose,monitor,or predict disease in clinical wound therapy.展开更多
Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examini...Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examining numerous scanning electron microscope(SEM)images and considering the crystal and aggregate characteristics of minerals,we identified four types of pyrite in the study area:euhedral crystals,irregular aggregates,framboidal aggregates,and metasomatized organisms.Among these types,framboidal aggregates are the most prevalent.The formation mechanism of framboidal pyrite can be categorized into inorganic and organic origins.As inferred from the pyrite characteristics in the study area,the formation mechanism of the metasomatized organisms aligns with the biologically induced mineralization mode of organic origin,whereas the framboidal aggregates are more associated with the biologically controlled mineralization mode of organic origin.This underscores a close relationship between the pyrite formation and organic matter,which in turn indicates that an organic origin is more consistent with the pyrite characteristics observed in this study area.The pyrite morphology can reflect reactive iron concentration.Euhedral pyrite crystals tend to form under a low reactive iron concentration,whereas the formation of framboidal pyrite requires a high reactive iron concentration.Additionally,the type and grain size of pyrite aggregates can reflect variations in the redox conditions of the depositional environment.Pyrite produces positive effects on reservoir storage space,with intercrystalline organic pores,intercrystalline pores,and mold pores associated with pyrite contributing greatly to the storage spaces.展开更多
The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-b...The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.展开更多
Non-melanoma skin cancers or keratinocyte cancers such as basal cell carcinoma and squamous cell carcinoma make up approximately 80% and 20% respectively, of skin cancers with the 6 million people that are treated ann...Non-melanoma skin cancers or keratinocyte cancers such as basal cell carcinoma and squamous cell carcinoma make up approximately 80% and 20% respectively, of skin cancers with the 6 million people that are treated annually in the United States. 1 in 5 Americans and 2 in 3 Australians develop skin cancer by the age of 70 years and in Australia it is the most expensive, amassing $1.5 billion, to treat cancers. Non-melanoma skin cancers are often self-detected and are usually removed by various means in doctors’ surgeries. Mohs micrographic surgery is acclaimed to be the gold standard for the treatment of skin cancer. However, a novel microscopic molecular-cellular non-invasive topical therapy described in this article, challenges the status of Mohs procedure for being the acclaimed gold standard.展开更多
Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs wit...Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications.Here,we demonstrate the epitaxial growth of 1T'-MoTe_(2) on Au(111)and graphitized silicon carbide(Gr/SiC)by molecular beam epitaxy(MBE).We investigate the morphology of the grown1T'-MoTe_(2) at the atomic level by scanning tunnelling microscopy(STM)and reveal the corresponding microscopic growth mechanism.It is found that the unique ordered Te structures preferentially deposited on Au(111)regulate the growth of monolayer single crystal 1T'-MoTe_(2),while the Mo clusters were preferentially deposited on the Gr/SiC substrate,which impedes the ordered growth of monolayer MoTe_(2).We confirm that the size of single crystal 1T'-MoTe_(2) grown on Au(111)is nearly two orders of magnitude larger than that on Gr/SiC.By scanning tunnelling spectroscopy(STS),we observe that the STS spectrum of the monolayer 1T'-MoTe_(2) nano-island at the edge is different from that at the interior,which exhibits enhanced conductivity.展开更多
The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive p...The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.展开更多
This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscop...This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems.展开更多
[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to com...[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to comparatively observe leaf epidermal structures of 4 pomegranate cultivars.[Result] The upper epidermal structures of 4 pomegranate cultivars were similar and showed reticular structure .However, the differences existed in lower epidermis,such as cell shape,cell size and arrangement mode of cell as well as stomatal density,while the structures of leaf vein in lower epidermis of 4 pomegranate cultivars were similar.[Conclusion] The research provided morphological references for studying heterosis of pomegranate to some extent.展开更多
The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and te...The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.展开更多
Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before...Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.展开更多
[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild an...[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金the National Natural Science Foundation of China(62205368)the Key Research and Development Program of Jiangsu Province(BE2020664).
文摘Light-sheet fluorescence microscopy(LSFM)has been widely used to image the three-dimensional(3D)structures and functions of various millimeter-size bio-specimen such as zebrafish.However,the sample adsorption and scattering cause shading of the light-sheet illumination,preventing the even 3D image of thick samples.Herein,we report a continuous-rotational light-sheet microscope(CR-LSM)that enables simultaneous 3D bright-field and fluorescence imaging.With a high-accuracy rotational stage,CR-LSM records the outline projections and the fluorescent images of the sample at multiple rotation angles.Then,3D morphology and fluorescent structure were reconstructed with a developed algorithm.Using CR-LSM,zebrafish’s whole-fish contour and blood vessel structures were obtained simultaneously.
文摘The construction of advanced laboratories for precision instruments, such as electron microscopes, involves unique challenges that are influenced by the specific environmental conditions required for optimal functionality. These include mitigating interference from magnetic fields and vibrations, which are critical for maintaining the precision and accuracy of the instruments used. This study aims to offer enhanced project management strategies and detailed construction solutions that address the environmental and technical needs specific to electron microscopy labs, thereby facilitating effective lab operations and extending the lifecycle of high-end precision instruments. Case studies of existing laboratory constructions, onsite investigations, and comprehensive reviews of the technical and environmental requirements provide the basis for a best practice for constructing sophisticated electron microscopy labs. The approach integrates both pre-construction planning and post-construction adjustments to create optimal operational environments. The findings suggest that successful lab constructions are those that incorporate thorough onsite assessments, strategic location choices, and the use of advanced construction materials and techniques specifically designed to counteract environmental challenges like magnetic and vibration interferences. Actionable guidelines for both planning and executing the construction of electron microscope labs highlighted in this tutorial are intended as an important resource to troubleshoot or upgrade existing lab facilities and to consult in preparation of future lab construction projects.
基金supported by the National Natural Science Foundation of China under Grant Nos.12274092,61871263,and 12034005partially by the Explorer Program of Shanghai under Grant No.21TS1400200+1 种基金partially by Natural Science Foundation of Shanghai under Grant No.21ZR1405200partially by Medical Engineering Fund of Fudan University under Grant No.YG2022-6.Mengyang Lu and Wei Shi contributed equally to this work.
文摘Automatic cell counting provides an effective tool for medical research and diagnosis.Currently,cell counting can be completed by transmitted-light microscope,however,it requires expert knowledge and the counting accuracy which is unsatisfied for overlapped cells.Further,the image-translation-based detection method has been proposed and the potential has been shown to accomplish cell counting from transmitted-light microscope,automatically and effectively.In this work,a new deep-learning(DL)-based two-stage detection method(cGAN-YOLO)is designed to further enhance the performance of cell counting,which is achieved by combining a DL-based fluorescent image translation model and a DL-based cell detection model.The various results show that cGAN-YOLO can effectively detect and count some different types of cells from the acquired transmitted-light microscope images.Compared with the previously reported YOLO-based one-stage detection method,high recognition accuracy(RA)is achieved by the cGAN-YOLO method,with an improvement of 29.80%.Furthermore,we can also observe that cGAN-YOLO obtains an improvement of 12.11%in RA compared with the previously reported image-translation-based detection method.In a word,cGAN-YOLO makes it possible to implement cell counting directly from the experimental acquired transmitted-light microscopy images with high flexibility and performance,which extends the applicability in clinical research.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
文摘In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.
基金the National Key Research andDevelopment Program of China(No.2021YFA1101100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA16020807)+3 种基金the Major Innovative Research Team of Suzhou,China(No.ZXT2019007)Suzhou Institute of Biomedical Engineering and Technology(SIBET)Jilin City Science and Technology Cooperation Project(No.E0550104)Science and Technology Innovation Talents in Universities of Henan Province and Doctor of Entrepreneurship and Innovation Program of Jiangsu Province in the year of 2020.
文摘The process of wound healing is routinely evaluated by histological evaluation in the clinic,which may cause scarring and secondary injury.Reflectance confocal microscopy(RCM)represents a noninvasive,real-time imaging technique that allows in vivo evaluation of the skin.Traditional RCM was wide-probe-based,which limited its application on uneven and covered skin.In this study,we report the development of a portable reflectance confocal microscope(PRCM)in which all components were assembled in a handheld shell.Although the size and weight of the PRCM were reduced based on the use of a microelectromechanical system,the resolution was kept at 0.91μm,and the field of view of the system was 343μm×532μm.When used in vivo,the PRCM was able to visualize cellular and nuclear morphology for both mouse and human skin.PRCM evaluations were then performed on wounds after topically applied mesenchymal stem cells(MSCs)or saline treatment.The PRCM allowed visualization of the formation of collagen bundles,re-epithelization from the wound edge to the wound bed,and hair follicle regeneration,which were consistent with histological evaluations.Therefore,we offer new insights into monitoring the effects of topically applied MSCs on the process of wound healing by using PRCM.This study illustrates that the newly developed PRCM represents a promising device for real-time,noninvasive monitoring of the dynamic process of wound healing,which demonstrates its potential to diagnose,monitor,or predict disease in clinical wound therapy.
基金funded by SINOPEC(scientific research project P21087-6).
文摘Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examining numerous scanning electron microscope(SEM)images and considering the crystal and aggregate characteristics of minerals,we identified four types of pyrite in the study area:euhedral crystals,irregular aggregates,framboidal aggregates,and metasomatized organisms.Among these types,framboidal aggregates are the most prevalent.The formation mechanism of framboidal pyrite can be categorized into inorganic and organic origins.As inferred from the pyrite characteristics in the study area,the formation mechanism of the metasomatized organisms aligns with the biologically induced mineralization mode of organic origin,whereas the framboidal aggregates are more associated with the biologically controlled mineralization mode of organic origin.This underscores a close relationship between the pyrite formation and organic matter,which in turn indicates that an organic origin is more consistent with the pyrite characteristics observed in this study area.The pyrite morphology can reflect reactive iron concentration.Euhedral pyrite crystals tend to form under a low reactive iron concentration,whereas the formation of framboidal pyrite requires a high reactive iron concentration.Additionally,the type and grain size of pyrite aggregates can reflect variations in the redox conditions of the depositional environment.Pyrite produces positive effects on reservoir storage space,with intercrystalline organic pores,intercrystalline pores,and mold pores associated with pyrite contributing greatly to the storage spaces.
基金Supported by National Natural Science Foundation of China(Nos.U2067205 and 12205098)National Key Laboratory of Computational Physics(HX02021-35).
文摘The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.
文摘Non-melanoma skin cancers or keratinocyte cancers such as basal cell carcinoma and squamous cell carcinoma make up approximately 80% and 20% respectively, of skin cancers with the 6 million people that are treated annually in the United States. 1 in 5 Americans and 2 in 3 Australians develop skin cancer by the age of 70 years and in Australia it is the most expensive, amassing $1.5 billion, to treat cancers. Non-melanoma skin cancers are often self-detected and are usually removed by various means in doctors’ surgeries. Mohs micrographic surgery is acclaimed to be the gold standard for the treatment of skin cancer. However, a novel microscopic molecular-cellular non-invasive topical therapy described in this article, challenges the status of Mohs procedure for being the acclaimed gold standard.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1204302)the National Natural Science Foundation of China (Grant Nos.52022029,52221001,92263107,U23A20570,62090035,U19A2090,and 12174098)+1 种基金the Hunan Provincial Natural Science Foundation of China (Grant Nos.2022JJ30142 and 2019XK2001)in part supported by the State Key Laboratory of Powder Metallurgy,Central South University。
文摘Transition metal ditellurides(TMTDs)have versatile physical properties,including non-trivial topology,Weyl semimetal states and unique spin texture.Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications.Here,we demonstrate the epitaxial growth of 1T'-MoTe_(2) on Au(111)and graphitized silicon carbide(Gr/SiC)by molecular beam epitaxy(MBE).We investigate the morphology of the grown1T'-MoTe_(2) at the atomic level by scanning tunnelling microscopy(STM)and reveal the corresponding microscopic growth mechanism.It is found that the unique ordered Te structures preferentially deposited on Au(111)regulate the growth of monolayer single crystal 1T'-MoTe_(2),while the Mo clusters were preferentially deposited on the Gr/SiC substrate,which impedes the ordered growth of monolayer MoTe_(2).We confirm that the size of single crystal 1T'-MoTe_(2) grown on Au(111)is nearly two orders of magnitude larger than that on Gr/SiC.By scanning tunnelling spectroscopy(STS),we observe that the STS spectrum of the monolayer 1T'-MoTe_(2) nano-island at the edge is different from that at the interior,which exhibits enhanced conductivity.
文摘The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.
基金Supported by the National Natural Science Foundation of China(52234003,52222402,52304044).
文摘This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems.
文摘[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to comparatively observe leaf epidermal structures of 4 pomegranate cultivars.[Result] The upper epidermal structures of 4 pomegranate cultivars were similar and showed reticular structure .However, the differences existed in lower epidermis,such as cell shape,cell size and arrangement mode of cell as well as stomatal density,while the structures of leaf vein in lower epidermis of 4 pomegranate cultivars were similar.[Conclusion] The research provided morphological references for studying heterosis of pomegranate to some extent.
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology, China
文摘The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.
文摘Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.
文摘[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.