Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt...Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.展开更多
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
A two-dimensional phase field(PF)model was developed to simulate the dendritic solidification in magnesium alloy with hcp crystal structure.By applying a parallel-adaptive mesh refinement(Para-AMR)algorithm,the comput...A two-dimensional phase field(PF)model was developed to simulate the dendritic solidification in magnesium alloy with hcp crystal structure.By applying a parallel-adaptive mesh refinement(Para-AMR)algorithm,the computational efficiency of the numerical model was greatly improved.Based on the PF model,a series of simulation cases were conducted and the results showed that the anisotropy coefficient and coupling coefficient had a great influence on the dendritic morphology of magnesium alloy.The dendritic growth kinetics was determined by the undercooling and equilibrium solute partition coefficient.A significant finding is acquired that with a large undercooling,the maximum solute concentration is located on both sides of the dendrite tip in the liquid,whereas the maximum solute concentration gradient is located right ahead of the dendrite tip in the liquid.The dendrite tip growth velocity decreases with the increase of the equilibrium solute partition coefficient,while the variation trend of the dendrite tip radius is the opposite.Quantitative analysis was carried out relating to the dendritic morphology and growth kinetics,and the simulated results are consistent with the theoretical models proposed in the previously published works.展开更多
A three-dimensional(3D)multiple phase field model,which takes into account the grain boundary(GB)energy anisotropy caused by texture,is established based on real grain orientations and Read-Shockley model.The model is...A three-dimensional(3D)multiple phase field model,which takes into account the grain boundary(GB)energy anisotropy caused by texture,is established based on real grain orientations and Read-Shockley model.The model is applied to the grain growth process of polycrystalline Mg(ZK60)alloy to investigate the evolution characteristics in different systems with varying proportions of low-angle grain boundary(LAGB)caused by different texture levels.It is found that the GB energy anisotropy can cause the grain growth kinetics to change,namely,higher texture levels(also means higher LAGB proportion)result in lower kinetics,and vice versa.The simulation results also show that the topological characteristics,such as LAGB proportion and distribution of grain size,undergo different evolution characteristics in different systems,and a more serious grain size fluctuation can be caused by a higher texture level.The mechanism is mainly the slower evolution of textured grains in their accumulation area and the faster coarsening rate of non-textured grains.Therefore,weakening the texture level is an effective way for implementing a desired homogenized microstructure in ZK60 Mg alloy.The rules revealed by the simulation results should be of great significance for revealing how the GB anisotropy affects the evolution of polycrystalline during the grain growth after recrystallization and offer the ideas for processing the alloy and optimizing the microstructure.展开更多
The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the i...The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.展开更多
A regularization of the surface tension anisotropic function used in vapor-liquid-solid nanowire growth was introduced into the quantitative phase-field model to simulate the faceted growth in solidification of alloys...A regularization of the surface tension anisotropic function used in vapor-liquid-solid nanowire growth was introduced into the quantitative phase-field model to simulate the faceted growth in solidification of alloys.Predicted results show that the value of δ can only affect the region near the tip,and the convergence with respect to δ can be achieved with the decrease of δ near the tip.It can be found that the steady growth velocity is not a mo no tonic function of the cusp amplitude,and the maximum value is approximately at ε=0.8 when the supersaturation is fixed.Moreover,the growth velocity is an increasing function of supersaturation with the morphological transition from facet to dendrite.展开更多
Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and ...Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and hence, the analysis of the space-filling structure was performed using the phase field model. An additional term was introduced to the conventional multi-phase field model to satisfy the volume constraint condition. Then, the equations were numerically solved using the finite difference method, and simulations were carried out for several nuclei settings. First, the nuclei were set on complete lattice points for a bcc or fcc arrangement, with a truncated hexagonal structure, which is known as a Kelvin cell, or a rhombic dodecahedron being obtained, respectively. Then, an irregularity was introduced in the initial nuclei arrangement. The results revealed that the truncated hexagonal structure was stable against a slight irregularity, whereas the rhombic polyhedral was destroyed by the instability. Finally, the nuclei were placed randomly, and the relaxation process of a certain cell was traced with the result that every cell leads to a convex polyhedron shape.展开更多
A quantitative multi-phase-field model for non-isothermal and polycrystalline solidification was developed and applied to dilute multicomponent alloys with hexagonal close-packed structures.The effects of Lewis coeffi...A quantitative multi-phase-field model for non-isothermal and polycrystalline solidification was developed and applied to dilute multicomponent alloys with hexagonal close-packed structures.The effects of Lewis coefficient and undercooling on dendrite growth were investigated systematically.Results show that large Lewis coefficients facilitate the release of the latent heat,which can accelerate the dendrite growth while suppress the dendrite tip radius.The greater the initial undercooling,the stronger the driving force for dendrite growth,the faster the growth rate of dendrites,the higher the solid fraction,and the more serious the solute microsegregation.The simulated dendrite growth dynamics are consistent with predictions from the phenomenological theory but significantly deviate from the classical JMAK theory which neglects the soft collision effect and mutual blocking among dendrites.Finally,taking the Mg-6Gd-2Zn(wt.%)alloy as an example,the simulated dendrite morphology shows good agreement with experimental results.展开更多
A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and th...A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and the other calculated from the classical nucleation theory. In the latter case, the simulated results show that the anisotropic elastic strain field yields significant effects on the behavior of nucleation. With a large lattice misfit between the matrixes and the precipitates, the nucleation process does not appear fully random but displays some spatial correlation and has a preference for the elastic soft direction. However, with a small lattice misfit, this bias does not look quite clear. On the contrary, in the case of fixed nucleation probability, the elastic field has no influence on the nucleation process. The lattice mismatch also exerts influences on the microstructure morphology: with lattice mismatch becoming larger, the microstructure proves to align along the elastic soft direction.展开更多
For a long time,the phase-field method has been considered a mesoscale phenomenological method that lacks physical accuracy and is unable to be closely linked to the mechanical or functional properties of materials.So...For a long time,the phase-field method has been considered a mesoscale phenomenological method that lacks physical accuracy and is unable to be closely linked to the mechanical or functional properties of materials.Some misunderstandings existing in these viewpoints need to be clarified.Therefore,it is necessary to propose or adopt the perspective of“unified phase-field modeling(UPFM)”to address these issues,which means that phase-field modeling has multiple unified characteristics.Specifically,the phase-field method is the perfect unity of thermodynamics and kinetics,the unity of multi-scale models from microto meso and then to macro,the unity of internal or/and external driving energy with order parameters as field variables,the unity of multiple physical fields,and thus the unity of material composition design,process optimization,microstructure control,and performance prediction.It is precisely because the phase-field approach has these unified characteristics that,after more than 40 years of development,it has been increasingly widely applied in materials science and engineering.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the proces...By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys.The quantitative phase-field equations were treated in a diffuse thin-interface limit,which enabled t...The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys.The quantitative phase-field equations were treated in a diffuse thin-interface limit,which enabled the quantitative links between interface dynamics and model parameters in the quasi-equilibrium simulations.As a result,the quantitative modeling is more effective in dealing with microstructural pattern formation in the large scale simulations without any spurious kinetic effects.The development of the quantitative phase-field models in modeling the formation of microstructures such as dendritic structures,eutectic lamellas,seaweed morphologies,and grain boundaries in different solidified conditions was also reviewed with the purpose of guiding to find the new prospect of applications in the quantitative phase-field simulations.展开更多
Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume chan...Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a...Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.展开更多
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
Solid-state phase transformation is usually associated with excellent mechanical properties in steel materials.A deep understanding of the formation and evolution of phase structure is essential to tailor their servic...Solid-state phase transformation is usually associated with excellent mechanical properties in steel materials.A deep understanding of the formation and evolution of phase structure is essential to tailor their service performance.As a powerful tool for capturing the evolution of complex microstructures,phase-field simulation quantitatively calculates the phase structures evolution without explicit assumptions about transient microstructures.With the development of advanced numerical technology and computing ability,phase-field methods have been successfully applied to solid-state phase transformation in steels and greatly support the research and development of advanced steel materials.The phase-field simulations of solid-phase transformation in steels were summarized,and the future development was proposed.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12072297 and12202370)the Natural Science Foundation of Sichuan Province of China(No.24NSFSC4777)。
文摘Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
基金financially supported by the National Natural Science Foundation of China(No.51805389)the Natural Science Foundation of Hubei Province,China(No.2018CFB210)the 111 Project(No.B17034)。
文摘A two-dimensional phase field(PF)model was developed to simulate the dendritic solidification in magnesium alloy with hcp crystal structure.By applying a parallel-adaptive mesh refinement(Para-AMR)algorithm,the computational efficiency of the numerical model was greatly improved.Based on the PF model,a series of simulation cases were conducted and the results showed that the anisotropy coefficient and coupling coefficient had a great influence on the dendritic morphology of magnesium alloy.The dendritic growth kinetics was determined by the undercooling and equilibrium solute partition coefficient.A significant finding is acquired that with a large undercooling,the maximum solute concentration is located on both sides of the dendrite tip in the liquid,whereas the maximum solute concentration gradient is located right ahead of the dendrite tip in the liquid.The dendrite tip growth velocity decreases with the increase of the equilibrium solute partition coefficient,while the variation trend of the dendrite tip radius is the opposite.Quantitative analysis was carried out relating to the dendritic morphology and growth kinetics,and the simulated results are consistent with the theoretical models proposed in the previously published works.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0701204)the 111 Project,China(Grant No.B20029)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.N2002017 and N2007011)the National Natural Science Foundation of China(Grant No.51571055)the Science Fund from the Science and Technology Bureau of Jiangyin High-Tech Industrial Development Zone,China(Grant No.ZX20200062)。
文摘A three-dimensional(3D)multiple phase field model,which takes into account the grain boundary(GB)energy anisotropy caused by texture,is established based on real grain orientations and Read-Shockley model.The model is applied to the grain growth process of polycrystalline Mg(ZK60)alloy to investigate the evolution characteristics in different systems with varying proportions of low-angle grain boundary(LAGB)caused by different texture levels.It is found that the GB energy anisotropy can cause the grain growth kinetics to change,namely,higher texture levels(also means higher LAGB proportion)result in lower kinetics,and vice versa.The simulation results also show that the topological characteristics,such as LAGB proportion and distribution of grain size,undergo different evolution characteristics in different systems,and a more serious grain size fluctuation can be caused by a higher texture level.The mechanism is mainly the slower evolution of textured grains in their accumulation area and the faster coarsening rate of non-textured grains.Therefore,weakening the texture level is an effective way for implementing a desired homogenized microstructure in ZK60 Mg alloy.The rules revealed by the simulation results should be of great significance for revealing how the GB anisotropy affects the evolution of polycrystalline during the grain growth after recrystallization and offer the ideas for processing the alloy and optimizing the microstructure.
基金Project(50671084) supported by the National Natural Science Foundation of ChinaProject(2009021028) supported by Science and Technique Foundation for Young Scholars of Shanxi Province, ChinaProject(20100470125) supported by National Science Foundation for Post-doctoral Scientists of China
文摘The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2001800)the National Natural Science Foundation of China(Grant No.21978298)+2 种基金the Natural Science Foundation of Shaanxi Province in China(Grant No.2020JM-111)Applied Basic Research Key Project of Yunnan,China(Grant No.202002AB080001-1)Henan Youth Talent Promotion Project.China(Grant No.2020HYTP019)。
文摘A regularization of the surface tension anisotropic function used in vapor-liquid-solid nanowire growth was introduced into the quantitative phase-field model to simulate the faceted growth in solidification of alloys.Predicted results show that the value of δ can only affect the region near the tip,and the convergence with respect to δ can be achieved with the decrease of δ near the tip.It can be found that the steady growth velocity is not a mo no tonic function of the cusp amplitude,and the maximum value is approximately at ε=0.8 when the supersaturation is fixed.Moreover,the growth velocity is an increasing function of supersaturation with the morphological transition from facet to dendrite.
文摘Phase-field modeling for three-dimensional foam structures is presented. The foam structure, which is generally applicable for porous material design, is geometrically approximated with a space-filling structure, and hence, the analysis of the space-filling structure was performed using the phase field model. An additional term was introduced to the conventional multi-phase field model to satisfy the volume constraint condition. Then, the equations were numerically solved using the finite difference method, and simulations were carried out for several nuclei settings. First, the nuclei were set on complete lattice points for a bcc or fcc arrangement, with a truncated hexagonal structure, which is known as a Kelvin cell, or a rhombic dodecahedron being obtained, respectively. Then, an irregularity was introduced in the initial nuclei arrangement. The results revealed that the truncated hexagonal structure was stable against a slight irregularity, whereas the rhombic polyhedral was destroyed by the instability. Finally, the nuclei were placed randomly, and the relaxation process of a certain cell was traced with the result that every cell leads to a convex polyhedron shape.
基金the National Natural Science Foundation-Youth Science Foundation Project(No.51901208)the Henan University Key Scientific Research Project(No.20B430020)+1 种基金the Key Scientific and Technological Projects in Henan Province(Nos.202102210016,202102210272)the Major Innovation Project of Zhengzhou City(No.23101000010).
文摘A quantitative multi-phase-field model for non-isothermal and polycrystalline solidification was developed and applied to dilute multicomponent alloys with hexagonal close-packed structures.The effects of Lewis coefficient and undercooling on dendrite growth were investigated systematically.Results show that large Lewis coefficients facilitate the release of the latent heat,which can accelerate the dendrite growth while suppress the dendrite tip radius.The greater the initial undercooling,the stronger the driving force for dendrite growth,the faster the growth rate of dendrites,the higher the solid fraction,and the more serious the solute microsegregation.The simulated dendrite growth dynamics are consistent with predictions from the phenomenological theory but significantly deviate from the classical JMAK theory which neglects the soft collision effect and mutual blocking among dendrites.Finally,taking the Mg-6Gd-2Zn(wt.%)alloy as an example,the simulated dendrite morphology shows good agreement with experimental results.
基金National Natural Science Foundation of China (50401013)
文摘A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and the other calculated from the classical nucleation theory. In the latter case, the simulated results show that the anisotropic elastic strain field yields significant effects on the behavior of nucleation. With a large lattice misfit between the matrixes and the precipitates, the nucleation process does not appear fully random but displays some spatial correlation and has a preference for the elastic soft direction. However, with a small lattice misfit, this bias does not look quite clear. On the contrary, in the case of fixed nucleation probability, the elastic field has no influence on the nucleation process. The lattice mismatch also exerts influences on the microstructure morphology: with lattice mismatch becoming larger, the microstructure proves to align along the elastic soft direction.
基金supported by the National Natural Science Foundation of China(grant number 52074246).
文摘For a long time,the phase-field method has been considered a mesoscale phenomenological method that lacks physical accuracy and is unable to be closely linked to the mechanical or functional properties of materials.Some misunderstandings existing in these viewpoints need to be clarified.Therefore,it is necessary to propose or adopt the perspective of“unified phase-field modeling(UPFM)”to address these issues,which means that phase-field modeling has multiple unified characteristics.Specifically,the phase-field method is the perfect unity of thermodynamics and kinetics,the unity of multi-scale models from microto meso and then to macro,the unity of internal or/and external driving energy with order parameters as field variables,the unity of multiple physical fields,and thus the unity of material composition design,process optimization,microstructure control,and performance prediction.It is precisely because the phase-field approach has these unified characteristics that,after more than 40 years of development,it has been increasingly widely applied in materials science and engineering.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金funding provided by the National Natural Science Foundation of China(No.12202137)TY's contribution is funded by the China and Germany Postdoctoral Exchange Program(Grant No.ZD202137).The first author(TY)would like to express his gratitude to Prof.Keita Yoshioka for reviewing this manuscript and for his invaluable feedback.
文摘By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by National Natural Science Foundation of China(No.51174177)the Fund of the State Key Solidification Laboratory of Solidification Processing in Northwestern Polytechnical University(No.SKLSP 201714)
文摘The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys.The quantitative phase-field equations were treated in a diffuse thin-interface limit,which enabled the quantitative links between interface dynamics and model parameters in the quasi-equilibrium simulations.As a result,the quantitative modeling is more effective in dealing with microstructural pattern formation in the large scale simulations without any spurious kinetic effects.The development of the quantitative phase-field models in modeling the formation of microstructures such as dendritic structures,eutectic lamellas,seaweed morphologies,and grain boundaries in different solidified conditions was also reviewed with the purpose of guiding to find the new prospect of applications in the quantitative phase-field simulations.
基金supported by the US Department of Energy’s Nuclear Energy Advance Modeling and Simulation (NEAMS) Program in Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the US Department of Energy (Grant No. DE-AC05- 76RL01830)Two of the authors (LI YuLan and GAO Fei) were partially supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy
文摘Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52071023,51901013,and 52122408)H.H.Wu also thanks to the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing,Nos.FRF-TP-2021-04C1 and 06500135).
文摘Solid-state phase transformation is usually associated with excellent mechanical properties in steel materials.A deep understanding of the formation and evolution of phase structure is essential to tailor their service performance.As a powerful tool for capturing the evolution of complex microstructures,phase-field simulation quantitatively calculates the phase structures evolution without explicit assumptions about transient microstructures.With the development of advanced numerical technology and computing ability,phase-field methods have been successfully applied to solid-state phase transformation in steels and greatly support the research and development of advanced steel materials.The phase-field simulations of solid-phase transformation in steels were summarized,and the future development was proposed.