There is an urgent need for high-quality and high-frequency clock generators for high-energy physics experiments.The transmission data rate exceeds 10 Gbps for a single channel in future readout electronics of silicon...There is an urgent need for high-quality and high-frequency clock generators for high-energy physics experiments.The transmission data rate exceeds 10 Gbps for a single channel in future readout electronics of silicon pixel detectors.Others,such as time measurement detectors,require a high time resolution based on the time-to-digital readout architecture.A phase-locked loop(PLL)is an essential and broadly used circuit in these applications.This study presents an application-specific integrated circuit of a low-jitter,low-power LC-tank that is PLL fabricated using 55-nm CMOS technology.It includes a 3rd-order frequency synthesis loop with a programmable bandwidth,a divide-by-2 pre-scaler,standard low-voltage differential signaling interfaces,and a current mode logic(CML)driver for clock transmissions.All the d-flip-flop dividers and phase-frequency detectors are protected from single-event upsets using the triple modular redundancy technique.The proposed VCO uses low-pass filters to suppress the noise from bias circuits.The tested LC-PLL covers a frequency locking range between 4.74 GHz and 5.92 GHz with two sub-bands.The jitter measurements of the frequency-halved clock(2.56 GHz)are less than 460 fs and 0.8 ps for the random and deterministic jitters,respectively,and a total of 7.5 ps peak-to-peak with a bit error rate of 10^(-12).The random and total jitter values for frequencies of 426 MHz and 20 MHz are less than 1.8 ps and 65 ps,respectively.The LC-PLL consumed 27 mW for the core and 73.8 mW in total.The measured results nearly coincided with the simulations and validated the analyses and tests.展开更多
In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is...In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is that,in the approximate analysis of the ring radome,a unified expression of the incident field on the radome surface is derived with E-plane and H-plane scanning,and the ring is approximated as 30 segments of straight strips.Solving the corresponding 60×60 linear equations yields the electric current distribution along the ring strip.The magnetic current along the complementary slot ring is obtained by duality.Thanks to the fully analytical format of the current distribution,the microwave wireless power-transmission characteristics are efficiently calculated using Munk’s scheme.An example of a slot ring biplanar symmetric hybrid radome is used to verify the accuracy and efficiency of the proposed scheme.The central processing unit(CPU)time is about 690 s using Ansys HFSS software versus 2.82 s for the proposed method.展开更多
A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor...A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.展开更多
A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency div...A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.12005245,12075100,and 11775244)by the Scientific and Technological Innovation Project(No.2020000165)from the Institute of High Energy Physics,Chinese Academy of Sciences+1 种基金partially funded by the Scientific Instrument Development Project of the Chinese Academy of Sciences(No.ZDKYYQ20200007)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y201905).
文摘There is an urgent need for high-quality and high-frequency clock generators for high-energy physics experiments.The transmission data rate exceeds 10 Gbps for a single channel in future readout electronics of silicon pixel detectors.Others,such as time measurement detectors,require a high time resolution based on the time-to-digital readout architecture.A phase-locked loop(PLL)is an essential and broadly used circuit in these applications.This study presents an application-specific integrated circuit of a low-jitter,low-power LC-tank that is PLL fabricated using 55-nm CMOS technology.It includes a 3rd-order frequency synthesis loop with a programmable bandwidth,a divide-by-2 pre-scaler,standard low-voltage differential signaling interfaces,and a current mode logic(CML)driver for clock transmissions.All the d-flip-flop dividers and phase-frequency detectors are protected from single-event upsets using the triple modular redundancy technique.The proposed VCO uses low-pass filters to suppress the noise from bias circuits.The tested LC-PLL covers a frequency locking range between 4.74 GHz and 5.92 GHz with two sub-bands.The jitter measurements of the frequency-halved clock(2.56 GHz)are less than 460 fs and 0.8 ps for the random and deterministic jitters,respectively,and a total of 7.5 ps peak-to-peak with a bit error rate of 10^(-12).The random and total jitter values for frequencies of 426 MHz and 20 MHz are less than 1.8 ps and 65 ps,respectively.The LC-PLL consumed 27 mW for the core and 73.8 mW in total.The measured results nearly coincided with the simulations and validated the analyses and tests.
基金supported in part by the National Key Research and Development Program(2021YFF1500100)Key Basic Research of Basic Strengthening Program of the Science and Technology Commission(2020-JCJQ-ZD-068)。
文摘In this paper,an in-band and out-of-band microwave wireless power-transmission characteristic analysis of a slot ring radome based on an approximate analytical method is proposed.The main contribution of this paper is that,in the approximate analysis of the ring radome,a unified expression of the incident field on the radome surface is derived with E-plane and H-plane scanning,and the ring is approximated as 30 segments of straight strips.Solving the corresponding 60×60 linear equations yields the electric current distribution along the ring strip.The magnetic current along the complementary slot ring is obtained by duality.Thanks to the fully analytical format of the current distribution,the microwave wireless power-transmission characteristics are efficiently calculated using Munk’s scheme.An example of a slot ring biplanar symmetric hybrid radome is used to verify the accuracy and efficiency of the proposed scheme.The central processing unit(CPU)time is about 690 s using Ansys HFSS software versus 2.82 s for the proposed method.
基金Supported by the National High Technology Re-search and Development Programof China (2004AA122310)
文摘A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.
文摘A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).