The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques ...The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.展开更多
A fuzzy logic intelligent control system of pulsed MAG welding inverter based on digital signal processor (DSP) is proposed to obtain the consistency of arc length in pulsed MAG welding. The proposed control system ...A fuzzy logic intelligent control system of pulsed MAG welding inverter based on digital signal processor (DSP) is proposed to obtain the consistency of arc length in pulsed MAG welding. The proposed control system combines the merits of intelligent control with DSP digital control. The fuzzy logic intelligent control system designed is a typical two-input-single-output structure, and regards the error and the change in error of peak arc voltage as two inputs and the background time as single output. The fuzzy logic intelligent control system is realized in a look-up table (LUT) method by using MATLAB based fuzzy logic toolbox, and the implement of LUT method based on DSP is also discussed. The pulsed MAG welding experimental results demonstrate that the developed fuzzy logic intelligent control system based on DSP has strong arc length controlling ability to accomplish the stable pulsed MAG welding process and controls pulsed MAG welding inverter digitally and intelligently.展开更多
A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and co...A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and constructional features of the whole digital control were presented. The resources of the DSP chip were efficiently utilized and the circuits are very concise, which can enhance the stability and reliability of welding inverter. Experimental results demonstrate that the developed digital control has the ability to accomplish the excellent pulsed gas metal arc welding process and the merits of the developed digital control are stable welding process, little spatter and perfect weld appearance.展开更多
The transistor voltage regulators have been widely adopted in the brushless AC generators in aircraft. This paper researches the digital voltage regulator. The paper presents the hardware platform of the digital volta...The transistor voltage regulators have been widely adopted in the brushless AC generators in aircraft. This paper researches the digital voltage regulator. The paper presents the hardware platform of the digital voltage regulator, which is based on a DSP chip — TMS320C32. A novel fuzzy filter control structure is developed from normal fuzzy control strategy. And the fuzzy filter control algorithm is adopted in the hardware platform successfully. The computer simulation has been conducted. Some control parameters have been obtained through the simulation. The same parameters have been applied in the digital regulation experiments on a brushless AC generator. In the experiment, the digital voltage regulator results in good responses. From the experiment results, it can be seen that the new control algorithm is efficient for the digital voltage regulator.展开更多
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adop...An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.展开更多
In modern manufacturing equipment control area,controller is required to deliver higher computing capability for adopting advanced algorithms to meet speed and accuracy requirements,and reconfigurabilities for changin...In modern manufacturing equipment control area,controller is required to deliver higher computing capability for adopting advanced algorithms to meet speed and accuracy requirements,and reconfigurabilities for changing or(and)adding features or functions.This paper presents a methodology in design and implementation of a high performance and reconfigurable platform for manufacturing equipment control.This methodology is in virtue of system on a programmable chip(SoPC)technolo- gy but replacing the on-chip processor by an external high performance,floating-point digital signal processor(DSP).The appli- cation of the DSP is designed as a multi-threaded framework,which has more flexibilities than a traditional single-loop one.Fur- thermore,the field programmable gate array(FPGA)system can be reconfigured easily and quickly to meet a new requirement by dragging and dropping pre-built components in a SoPC building environment.As a result,the controller platform is more recon- figurable in terms of algorithms and functions.This platform is implemented in a 3-axis milling machine control and the result indicates that the design and implementation presented in this paper is feasible.展开更多
数字信号处理器(digital signal processor,DSP)通常采用超长指令字(very long instruction word,VLIW)和单指令多数据(single instruction multiple data,SIMD)的架构来提升处理器整体计算性能,从而适用于高性能计算、图像处理、嵌入...数字信号处理器(digital signal processor,DSP)通常采用超长指令字(very long instruction word,VLIW)和单指令多数据(single instruction multiple data,SIMD)的架构来提升处理器整体计算性能,从而适用于高性能计算、图像处理、嵌入式系统等各个领域.飞腾迈创数字处理器(FT-Matrix)作为国防科技大学自主研制的高性能通用数字信号处理器,其极致计算性能的体现依赖于对VLIW与SIMD架构特点的充分挖掘.不止是飞腾迈创系列,绝大多数处理器上高度优化的内核代码或核心库函数都依赖于底层汇编级工具或手工开发.然而,手工编写内核算子的开发方法总是需要大量的时间和人力开销来充分释放硬件的性能潜力.尤其是VLIW+SIMD的处理器,专家级汇编开发的难度更为突出.针对这些问题,提出一种面向飞腾迈创数字处理器的高性能的内核代码自动生成框架(automatic kernel code-generation framework on FT-Matrix),将飞腾迈创处理器的架构特性引入到多层次的内核代码优化方法中.该框架包括3层优化组件:自适应循环分块、标向量协同的自动向量化和细粒度的指令级优化.该框架可以根据硬件的内存层次结构和内核的数据布局自动搜索最优循环分块参数,并进一步引入标量-向量单元协同的自动向量化指令选择与数据排布,以提高内核代码执行时的数据复用和并行性.此外,该框架提供了类汇编的中间表示,以应用各种指令级优化来探索更多指令级并行性(ILP)的优化空间,同时也为其他硬件平台提供了后端快速接入和自适应代码生成的模块,以实现高效内核代码开发的敏捷设计.实验表明,该框架生成的内核基准测试代码的平均性能是目标-数字信号处理器(DSP)--的手工函数库的3.25倍,是使用普通向量C语言编写的内核代码的20.62倍.展开更多
A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which a...A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.展开更多
文摘The automation process is a very important pillar for Industry 4.0.One of the first steps is the control of motors to improve production efficiency and generate energy savings.In mass production industries,techniques such as digital signal processing(DSP)systems are implemented to control motors.These systems are efficient but very expensive for certain applications.From this arises the need for a controller capable of handling AC and DC motors that improves efficiency and maintains low energy consumption.This project presents the design of an adaptive control system for brushless AC induction and DC motors,which is functional to any type of plant in the industry.The design was possible by implementing Matlab software and tools such as digital signal processor(DSP)and Simulink.Through an extensive investigation of the state of the art,three models needed to represent the control system have been specified.The first model for the AC motor,the second for the DC motor and the third for the DSP control;this is done in this way so that the probability of failure is lower.Subsequently,these models have been programmed in Simulink,integrating the three main models into one.In this way,the design of a controller for use in AC induction motors,specifically squirrel cage and brushless DC motors,has been achieved.The final model represents a response time of 0.25 seconds,which is optimal for this type of application,where response times of 2e-3 to 3 seconds are expected.
基金supported by National Natural Science Foundation of China(No.50375054)China Postdoctoral Science Foundation (No.20060400745).
文摘A fuzzy logic intelligent control system of pulsed MAG welding inverter based on digital signal processor (DSP) is proposed to obtain the consistency of arc length in pulsed MAG welding. The proposed control system combines the merits of intelligent control with DSP digital control. The fuzzy logic intelligent control system designed is a typical two-input-single-output structure, and regards the error and the change in error of peak arc voltage as two inputs and the background time as single output. The fuzzy logic intelligent control system is realized in a look-up table (LUT) method by using MATLAB based fuzzy logic toolbox, and the implement of LUT method based on DSP is also discussed. The pulsed MAG welding experimental results demonstrate that the developed fuzzy logic intelligent control system based on DSP has strong arc length controlling ability to accomplish the stable pulsed MAG welding process and controls pulsed MAG welding inverter digitally and intelligently.
基金Supported by National Natural Science Foundation of China ( No50375054)China Postdoctoral Science Foundation ( No20060400745)
文摘A digital control of pulsed gas metal arc welding inverter was proposed. A control system consisting of analogue parts was replaced with a new digital control implemented in a TMS320LF2407A DSP chip. The design and constructional features of the whole digital control were presented. The resources of the DSP chip were efficiently utilized and the circuits are very concise, which can enhance the stability and reliability of welding inverter. Experimental results demonstrate that the developed digital control has the ability to accomplish the excellent pulsed gas metal arc welding process and the merits of the developed digital control are stable welding process, little spatter and perfect weld appearance.
基金Pre-research subject of the 9-th 5 year plan for National Defenc
文摘The transistor voltage regulators have been widely adopted in the brushless AC generators in aircraft. This paper researches the digital voltage regulator. The paper presents the hardware platform of the digital voltage regulator, which is based on a DSP chip — TMS320C32. A novel fuzzy filter control structure is developed from normal fuzzy control strategy. And the fuzzy filter control algorithm is adopted in the hardware platform successfully. The computer simulation has been conducted. Some control parameters have been obtained through the simulation. The same parameters have been applied in the digital regulation experiments on a brushless AC generator. In the experiment, the digital voltage regulator results in good responses. From the experiment results, it can be seen that the new control algorithm is efficient for the digital voltage regulator.
文摘An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.
基金Supported by the Foundation:Guangdong Provincial Science and Technology Committee under Grant No.2002C1020407.
文摘In modern manufacturing equipment control area,controller is required to deliver higher computing capability for adopting advanced algorithms to meet speed and accuracy requirements,and reconfigurabilities for changing or(and)adding features or functions.This paper presents a methodology in design and implementation of a high performance and reconfigurable platform for manufacturing equipment control.This methodology is in virtue of system on a programmable chip(SoPC)technolo- gy but replacing the on-chip processor by an external high performance,floating-point digital signal processor(DSP).The appli- cation of the DSP is designed as a multi-threaded framework,which has more flexibilities than a traditional single-loop one.Fur- thermore,the field programmable gate array(FPGA)system can be reconfigured easily and quickly to meet a new requirement by dragging and dropping pre-built components in a SoPC building environment.As a result,the controller platform is more recon- figurable in terms of algorithms and functions.This platform is implemented in a 3-axis milling machine control and the result indicates that the design and implementation presented in this paper is feasible.
文摘数字信号处理器(digital signal processor,DSP)通常采用超长指令字(very long instruction word,VLIW)和单指令多数据(single instruction multiple data,SIMD)的架构来提升处理器整体计算性能,从而适用于高性能计算、图像处理、嵌入式系统等各个领域.飞腾迈创数字处理器(FT-Matrix)作为国防科技大学自主研制的高性能通用数字信号处理器,其极致计算性能的体现依赖于对VLIW与SIMD架构特点的充分挖掘.不止是飞腾迈创系列,绝大多数处理器上高度优化的内核代码或核心库函数都依赖于底层汇编级工具或手工开发.然而,手工编写内核算子的开发方法总是需要大量的时间和人力开销来充分释放硬件的性能潜力.尤其是VLIW+SIMD的处理器,专家级汇编开发的难度更为突出.针对这些问题,提出一种面向飞腾迈创数字处理器的高性能的内核代码自动生成框架(automatic kernel code-generation framework on FT-Matrix),将飞腾迈创处理器的架构特性引入到多层次的内核代码优化方法中.该框架包括3层优化组件:自适应循环分块、标向量协同的自动向量化和细粒度的指令级优化.该框架可以根据硬件的内存层次结构和内核的数据布局自动搜索最优循环分块参数,并进一步引入标量-向量单元协同的自动向量化指令选择与数据排布,以提高内核代码执行时的数据复用和并行性.此外,该框架提供了类汇编的中间表示,以应用各种指令级优化来探索更多指令级并行性(ILP)的优化空间,同时也为其他硬件平台提供了后端快速接入和自适应代码生成的模块,以实现高效内核代码开发的敏捷设计.实验表明,该框架生成的内核基准测试代码的平均性能是目标-数字信号处理器(DSP)--的手工函数库的3.25倍,是使用普通向量C语言编写的内核代码的20.62倍.
文摘A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.