AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognit...Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognition system are different types of presentation attacks like print attacks,3D mask attacks,replay attacks,etc.The proposed model uses pupil characteristics for liveness detection during the authentication process.The pupillary light reflex is an involuntary reaction controlling the pupil’s diameter at different light intensities.The proposed framework consists of two-phase methodologies.In the first phase,the pupil’s diameter is calculated by applying stimulus(light)in one eye of the subject and calculating the constriction of the pupil size on both eyes in different video frames.The above measurement is converted into feature space using Kohn and Clynes model-defined parameters.The Support Vector Machine is used to classify legitimate subjects when the diameter change is normal(or when the eye is alive)or illegitimate subjects when there is no change or abnormal oscillations of pupil behavior due to the presence of printed photograph,video,or 3D mask of the subject in front of the camera.In the second phase,we perform the facial recognition process.Scale-invariant feature transform(SIFT)is used to find the features from the facial images,with each feature having a size of a 128-dimensional vector.These features are scale,rotation,and orientation invariant and are used for recognizing facial images.The brute force matching algorithm is used for matching features of two different images.The threshold value we considered is 0.08 for good matches.To analyze the performance of the framework,we tested our model in two Face antispoofing datasets named Replay attack datasets and CASIA-SURF datasets,which were used because they contain the videos of the subjects in each sample having three modalities(RGB,IR,Depth).The CASIA-SURF datasets showed an 89.9%Equal Error Rate,while the Replay Attack datasets showed a 92.1%Equal Error Rate.展开更多
The pupil recognition method is helpful in many real-time systems,including ophthalmology testing devices,wheelchair assistance,and so on.The pupil detection system is a very difficult process in a wide range of datas...The pupil recognition method is helpful in many real-time systems,including ophthalmology testing devices,wheelchair assistance,and so on.The pupil detection system is a very difficult process in a wide range of datasets due to problems caused by varying pupil size,occlusion of eyelids,and eyelashes.Deep Convolutional Neural Networks(DCNN)are being used in pupil recognition systems and have shown promising results in terms of accuracy.To improve accuracy and cope with larger datasets,this research work proposes BOC(BAT Optimized CNN)-IrisNet,which consists of optimizing input weights and hidden layers of DCNN using the evolutionary BAT algorithm to efficiently find the human eye pupil region.The proposed method is based on very deep architecture and many tricks from recently developed popular CNNs.Experiment results show that the BOC-IrisNet proposal can efficiently model iris microstructures and provides a stable discriminating iris representation that is lightweight,easy to implement,and of cutting-edge accuracy.Finally,the region-based black box method for determining pupil center coordinates was introduced.The proposed architecture was tested using various IRIS databases,including the CASIA(Chinese academy of the scientific research institute of automation)Iris V4 dataset,which has 99.5%sensitivity and 99.75%accuracy,and the IIT(Indian Institute of Technology)Delhi dataset,which has 99.35%specificity and MMU(Multimedia University)99.45%accuracy,which is higher than the existing architectures.展开更多
The objective of this study was to experimentally evaluate children’s daily food memory and eating habits.The study found that the gender and school location had an impact on the nutritional condition of primary scho...The objective of this study was to experimentally evaluate children’s daily food memory and eating habits.The study found that the gender and school location had an impact on the nutritional condition of primary school students as well as the school food scheme.The investigations were based on three hypotheses and three research questions.In this study,the Eating Habits and Daily Dietary Recall Scale was the tool utilized to gather data(EPDDRS).Four experts—three from the department of vocational education and one lecturer in test and measurement evaluation—validated the instrument’s face.The dependability indices of EPDDRS were calculated using Cronbach’s Alpha.While delivering the instruments,the researcher used the direct administration and retrieval approach.58 instructors and a sample size of 1240 students were selected using a systematic random selection approach.The obtained data was examined using mean and standard deviation to address the research objectives,and the null hypotheses were tested using t-test statistics and Analysis of variance(ANOVA)at the 0.05 level of significance.The main conclusions of this study were that the school meal program had a favorable impact on the students’nutritional status.Also,a balanced ration of nutrient-dense meals that were suitably varied was supplied for the students via the school food program.Also,the findings revealed a substantial difference in the mean assessments of male and female students about their eating patterns.On the school meal program’s dietary recall list,students from high,middle,and low socioeconomic status differ significantly.Recommendations were given to the government,schools,and parents based on the study’s findings.The study’s shortcomings were discussed,and recommendations for more research were made.展开更多
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
基金funded by Researchers Supporting Program at King Saud University (RSPD2023R809).
文摘Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognition system are different types of presentation attacks like print attacks,3D mask attacks,replay attacks,etc.The proposed model uses pupil characteristics for liveness detection during the authentication process.The pupillary light reflex is an involuntary reaction controlling the pupil’s diameter at different light intensities.The proposed framework consists of two-phase methodologies.In the first phase,the pupil’s diameter is calculated by applying stimulus(light)in one eye of the subject and calculating the constriction of the pupil size on both eyes in different video frames.The above measurement is converted into feature space using Kohn and Clynes model-defined parameters.The Support Vector Machine is used to classify legitimate subjects when the diameter change is normal(or when the eye is alive)or illegitimate subjects when there is no change or abnormal oscillations of pupil behavior due to the presence of printed photograph,video,or 3D mask of the subject in front of the camera.In the second phase,we perform the facial recognition process.Scale-invariant feature transform(SIFT)is used to find the features from the facial images,with each feature having a size of a 128-dimensional vector.These features are scale,rotation,and orientation invariant and are used for recognizing facial images.The brute force matching algorithm is used for matching features of two different images.The threshold value we considered is 0.08 for good matches.To analyze the performance of the framework,we tested our model in two Face antispoofing datasets named Replay attack datasets and CASIA-SURF datasets,which were used because they contain the videos of the subjects in each sample having three modalities(RGB,IR,Depth).The CASIA-SURF datasets showed an 89.9%Equal Error Rate,while the Replay Attack datasets showed a 92.1%Equal Error Rate.
文摘The pupil recognition method is helpful in many real-time systems,including ophthalmology testing devices,wheelchair assistance,and so on.The pupil detection system is a very difficult process in a wide range of datasets due to problems caused by varying pupil size,occlusion of eyelids,and eyelashes.Deep Convolutional Neural Networks(DCNN)are being used in pupil recognition systems and have shown promising results in terms of accuracy.To improve accuracy and cope with larger datasets,this research work proposes BOC(BAT Optimized CNN)-IrisNet,which consists of optimizing input weights and hidden layers of DCNN using the evolutionary BAT algorithm to efficiently find the human eye pupil region.The proposed method is based on very deep architecture and many tricks from recently developed popular CNNs.Experiment results show that the BOC-IrisNet proposal can efficiently model iris microstructures and provides a stable discriminating iris representation that is lightweight,easy to implement,and of cutting-edge accuracy.Finally,the region-based black box method for determining pupil center coordinates was introduced.The proposed architecture was tested using various IRIS databases,including the CASIA(Chinese academy of the scientific research institute of automation)Iris V4 dataset,which has 99.5%sensitivity and 99.75%accuracy,and the IIT(Indian Institute of Technology)Delhi dataset,which has 99.35%specificity and MMU(Multimedia University)99.45%accuracy,which is higher than the existing architectures.
文摘The objective of this study was to experimentally evaluate children’s daily food memory and eating habits.The study found that the gender and school location had an impact on the nutritional condition of primary school students as well as the school food scheme.The investigations were based on three hypotheses and three research questions.In this study,the Eating Habits and Daily Dietary Recall Scale was the tool utilized to gather data(EPDDRS).Four experts—three from the department of vocational education and one lecturer in test and measurement evaluation—validated the instrument’s face.The dependability indices of EPDDRS were calculated using Cronbach’s Alpha.While delivering the instruments,the researcher used the direct administration and retrieval approach.58 instructors and a sample size of 1240 students were selected using a systematic random selection approach.The obtained data was examined using mean and standard deviation to address the research objectives,and the null hypotheses were tested using t-test statistics and Analysis of variance(ANOVA)at the 0.05 level of significance.The main conclusions of this study were that the school meal program had a favorable impact on the students’nutritional status.Also,a balanced ration of nutrient-dense meals that were suitably varied was supplied for the students via the school food program.Also,the findings revealed a substantial difference in the mean assessments of male and female students about their eating patterns.On the school meal program’s dietary recall list,students from high,middle,and low socioeconomic status differ significantly.Recommendations were given to the government,schools,and parents based on the study’s findings.The study’s shortcomings were discussed,and recommendations for more research were made.