Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi...The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.展开更多
By utilizing phase field method combined with analysis on free energy and interatomic potentials, pre-precipitation phase formation and transformation process of Ni0.75Al0.05Fe0.2 alloy in early precipitation stage du...By utilizing phase field method combined with analysis on free energy and interatomic potentials, pre-precipitation phase formation and transformation process of Ni0.75Al0.05Fe0.2 alloy in early precipitation stage during the ageing process under 1 000 K were studied. And free energy, microstructures, compositions and volume fractions of pre-precipitation phase and equilibrium phase were analyzed. The simulation results indicate that nonstoichiometric Llo pre-precipitation phase formed first, and then would gradually transform into L12 equilibrium phase. It is discovered that the phase transformation process was closely related to free energy and interatomic potentials. Additionally, it is revealed that free energy of Llo pre-precipitation phase was higher and interatomic potential was smaller than that of L12 equilibrium phase. Therefore, it is concluded that Llo phase was unstable, and phase transformation would occur to L12 which was more stable.展开更多
A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth m...A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries.展开更多
Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock ...Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.展开更多
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking ...Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。展开更多
Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry...Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.展开更多
The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidifica...The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction.展开更多
A novel solid-gas reaction preparation technology was used to adjust the composition and microstructure of the composite crystal materials by changing the preparation parameters. Compared with the commonly used sol-ge...A novel solid-gas reaction preparation technology was used to adjust the composition and microstructure of the composite crystal materials by changing the preparation parameters. Compared with the commonly used sol-gel method, acid base neutralization sedimentation method, hydrothermal method, and gas phase deposition method, the technology was relatively simplified and the elemental composition was controllable, without the use of openings and additives. A kind of multi-element composite porous metal oxide was obtained by pre-intercalation and decarburization. In order to increase the porosity of MoO3 material and promote the adsorption and diffusion of reactant molecules, the microstructure of MoO3 was studied. The preparation process of porous molybdenum trioxide by solid gas combination process was discussed, which provides an innovative idea for the design and preparation of new materials with a large specific surface area and other desirable properties.展开更多
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pu...Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material was numerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domain of undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solved using the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patterns was shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
In this work, a new full quantum method is proposed to calculate the broadening and shift coefficients of the D1 line in neutral collision. Based on the variable phase approach and Baranger theory, this method calcula...In this work, a new full quantum method is proposed to calculate the broadening and shift coefficients of the D1 line in neutral collision. Based on the variable phase approach and Baranger theory, this method calculates the scattering phase shift instead of scattering matrix elements in order to simplify the calculation. As an illustration, this method is used to calculate the broadening and shift coefficients of the absorption lines of alkali metal atom Rb, as it collides with buffer gas He and Ar, in a temperature range from 150 K to 800 K. With a comparison with other calculations and experiment measurements, the reasonable agreements in all cases demonstrate the validity and simplicity of this method.展开更多
A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest gra...A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.展开更多
We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to...We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.展开更多
A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes wi...A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.展开更多
A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by d...A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1 - I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1 - I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1 - I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.展开更多
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金Project (10964004) supported by the National Natural Science Foundation of ChinaProject (20070731001) supported by Research Fund for the Doctoral Program of ChinaProject (096RJZA104) supported by the Natural Science Foundation of Gansu Province,China
文摘The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.
基金Projects(10902086, 50941020, 50875217) supported by the National Natural Science Foundation of China Projects(JC201005) supported by Basic Research Fund of Northwestern Polytechnical University, China Project supported by Graduate Starting Seed Fund and Doctoral Foundation of Northwestern Polytechnical University, China
文摘By utilizing phase field method combined with analysis on free energy and interatomic potentials, pre-precipitation phase formation and transformation process of Ni0.75Al0.05Fe0.2 alloy in early precipitation stage during the ageing process under 1 000 K were studied. And free energy, microstructures, compositions and volume fractions of pre-precipitation phase and equilibrium phase were analyzed. The simulation results indicate that nonstoichiometric Llo pre-precipitation phase formed first, and then would gradually transform into L12 equilibrium phase. It is discovered that the phase transformation process was closely related to free energy and interatomic potentials. Additionally, it is revealed that free energy of Llo pre-precipitation phase was higher and interatomic potential was smaller than that of L12 equilibrium phase. Therefore, it is concluded that Llo phase was unstable, and phase transformation would occur to L12 which was more stable.
基金Projects(11102164,11304243)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+1 种基金Project(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NWPU,China
文摘A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries.
基金This study was funded by the National Natural Science Foundation of China(No.51978039).
文摘Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
基金supported by National Defense Basic Scientific Research Program of China(Grant Nos.JCKY2020408B002,WDZC2022-12).
文摘Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。
基金Project(11102164)supported by the National Natural Science Foundation of ChinaProject(G9KY101502)supported by NPU Foundation for Fundamental Research,China
文摘Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50395103 and 50271057).
文摘The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction.
基金Funded by National Natural Science Foundation of China(No.516722040)。
文摘A novel solid-gas reaction preparation technology was used to adjust the composition and microstructure of the composite crystal materials by changing the preparation parameters. Compared with the commonly used sol-gel method, acid base neutralization sedimentation method, hydrothermal method, and gas phase deposition method, the technology was relatively simplified and the elemental composition was controllable, without the use of openings and additives. A kind of multi-element composite porous metal oxide was obtained by pre-intercalation and decarburization. In order to increase the porosity of MoO3 material and promote the adsorption and diffusion of reactant molecules, the microstructure of MoO3 was studied. The preparation process of porous molybdenum trioxide by solid gas combination process was discussed, which provides an innovative idea for the design and preparation of new materials with a large specific surface area and other desirable properties.
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
文摘Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material was numerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domain of undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solved using the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patterns was shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11405077 and 11575073)
文摘In this work, a new full quantum method is proposed to calculate the broadening and shift coefficients of the D1 line in neutral collision. Based on the variable phase approach and Baranger theory, this method calculates the scattering phase shift instead of scattering matrix elements in order to simplify the calculation. As an illustration, this method is used to calculate the broadening and shift coefficients of the absorption lines of alkali metal atom Rb, as it collides with buffer gas He and Ar, in a temperature range from 150 K to 800 K. With a comparison with other calculations and experiment measurements, the reasonable agreements in all cases demonstrate the validity and simplicity of this method.
基金This work was supported by the Guangdong Provincial Natural Science Foundation of China No.990781.
文摘A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.
基金Supported by the National Natural Science Foundation of China under Grant No 61205103
文摘We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.
基金Project supported by the Natural Science Foundation of Beijing,China(Grant No.3091002)
文摘A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDA09020402the National Key Basic Research Program of China under Grant Nos 2013CBA01900,2010CB934300,2011CBA00607,and 2011CB932804+2 种基金the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003the National Natural Science Foundation of China under Grant Nos 61176122,61106001,61261160500,and 61376006the Science and Technology Council of Shanghai under Grant Nos 12nm0503701,13DZ2295700,12QA1403900,and 13ZR1447200
文摘A novel slow-down set waveform is proposed to improve the set performance and a 1 kb phase change random access memory chip fabricated with a 13nm CMOS technology is implemented to investigate the set performance by different set programming strategies based on this new set pulse. The amplitude difference (I1 - I2) of the set pulse is proved to be a crucial parameter for set programming. We observe and analyze the cell characteristics with different I1 - I2 by means of thermal simulations and high-resolution transmission electron microscopy, which reveal that an incomplete set programming will occur when the proposed slow-down pulse is set with an improperly high I1 - I2. This will lead to an amorphous residue in the active region. We also discuss the programming method to avoid the set performance degradations.