The stability of the phases in equilibrium is calculated and discussed in order to analyse and predict the reactions in SiC and Si_3N_4 whisker formation.Equilibria among SiC,Si_3N_4,Si_2N_2O,SiO_2 and the gas phase a...The stability of the phases in equilibrium is calculated and discussed in order to analyse and predict the reactions in SiC and Si_3N_4 whisker formation.Equilibria among SiC,Si_3N_4,Si_2N_2O,SiO_2 and the gas phase are evaluated at different C activity,N_2 pressure,and temperature.According to the phase stability diagrams,Si_3N_4 whisker was formed with the increase of N_2 pressure and decrease of C activity;SiC whisker was stable with the increase of C activity and decrease of N_2 pressure.In order to control the impure phases during the whisker formation,O_2 partial pressure is the most important factor.展开更多
The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium l...The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium lattice constants of TixV1-xC show a nearly linear reduction with increasing addition of V.The elastic properties of TixV1-xC are varied by doping with V.The bulk modulus of Ti0.5V0.5C is larger than that of pure TiC,as well as Ti0.5V0.5C has the largest C44 among TixV1-xC(0≤x≤1),indicating that Ti0.5V0.5C has higher hardness than pure TiC.However,Ti0.5V0.5C presents brittleness based on the analysis of ductile/brittle behavior.The Ti0.5V0.5C carbide has the lowest formation energy,indicating that Ti0.5V0.5C is more stable than all other alloys.展开更多
First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approxima...First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.展开更多
An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a st...An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.展开更多
The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on...The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.展开更多
Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unch...Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.展开更多
Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with differ...Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation.展开更多
Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The g...Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.展开更多
High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictabl...High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents.The development of compositionally complex materials such as HEAs requires high-throughput experimental methods,which involves preparing many samples in a short time.Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of(Cr,Fe,V)-(Ta,W).First,we deposited the compositional gradient film by co-sputtering.Second,the mechanical properties and thermal stability of the(Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x(x=13-82)multiplebased-elemental(MBE)alloys were investigated.After the deposited wafer was annealed at 600℃for 0.5 h,the initial amorphous phase was transformed into a body-centered cubic(bcc)structure phase when x=33.Oxides were observed on the film surface when x was 72 and 82.Finally,the highest hardness of as-deposited films was found when x=18,and the maximum hardness of annealed films was found when x=33.展开更多
The reversible storage of Zn^(2+)ions in Prussian blue analogues with typical aqueous solution was challenged by fast degradation and poor coulombic efficiency,while the mechanism is yet to be uncovered.This study cor...The reversible storage of Zn^(2+)ions in Prussian blue analogues with typical aqueous solution was challenged by fast degradation and poor coulombic efficiency,while the mechanism is yet to be uncovered.This study correlates the performance of the nickel hexacyanoferrate to the dynamics of H_(2)O in the electrolyte and the associated phase stability of the electrode.It demonstrates severe Ni dissolution in conventional diluted aqueous electrolyte(1 M ZnSO^(4)or 1 M Zn(TFSI)^(2)),leading to structure collapse with the formation of an electrochemical inert phase.This is regarded as the descriptor for the fast decay of nickel hexacyanoferrate in diluted aqueous electrolyte.However,a well-preserved open framework for zinc storage was obtained in concentrated aqueous electrolyte(1 M Zn(TFSI)_(2)+21 M LiTFSI)—the H_(2)O activity is highly suppressed by extensive coordination—thus,reversible capacity of 60.2 m Ah g^(-1)over 1600 cycles could be delivered.展开更多
In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and pho...In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and photoluminescence analysis of the bare CsPbI2Br and CsPb1-xSrxI2Br perovskite thin films were studied systematically to investigate the role of Sr2+ incorporation. It is observed that the surface morphology of the CsPbI2Br perovskite thin film has been improved by partial substitution of Pb2+ by Sr2+ which facilitates photoactive black phase-stabilization and defect passivation. The champion device having CsPb0.98Sr0.02I2Br composition exhibited a power conversion efficiency (PCE) of 16.61% which is much higher than the bare device (13.65%). Furthermore, our CsPb0.98Sr0.02I2Br-based devices maintain > 85% of its initial efficiency over 100 h in ambient conditions.展开更多
La0.75Sr0.25CryMn1-yO3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-pro...La0.75Sr0.25CryMn1-yO3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-programmed reduction, electrical conductivity, I-V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y 〉 0.4, the basic perovskite structure under the anode operating condition was sustained. A cell with 0.5-ram-thick scandia-stabilized zirconia electrolyte and La0.75Sr0.25CryMn1-yO3 anode delivered a Dower density of -15 mW-cm^-2 at 850℃.展开更多
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco...The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
CaCO_(3)is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones.Some subducted CaCO_(3)can be dissolved in subduction fluids and recycled back to the surface via arc...CaCO_(3)is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones.Some subducted CaCO_(3)can be dissolved in subduction fluids and recycled back to the surface via arc volcanoes degassing.At the same time,there still remain large amounts of CaCO_(3)and its reaction products,which could be further transported into Earth's deep interior.These internal processes link atmosphere,hydrosphere and biosphere with the deep solid Earth,modifying the environments of our planet.In this review,we summarize current understanding from high pressure-temperature experiments and field petrological observations on the physical and chemical properties of CaCO_(3).In particular,the phase stability and reactions of CaCO_(3)largely control the migration and reservation of oxidized carbon in subducting slabs.Finally,we present several critical but unsolved questions on CaCO_(3)subducting in the deep mantle.展开更多
Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structur...Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba_(2)Na_(3)(B_(3)O_(6))_(2)F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F into the BaB_(2)O_(4),Na BO_(2), and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F at 3 GPa and its decomposition into BaB_(2)O_(4), NaBO_(2), and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba_(2)Na_(3)(B_(3)O_(6))_(2)F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB_(2)O_(4).展开更多
Phase stability of four different chemical component Fe-Cr-Mn(W, V) alloys are investigated by experimental method and thermodynamic model in this paper. It is indicated that the main phase of four alloys after aged u...Phase stability of four different chemical component Fe-Cr-Mn(W, V) alloys are investigated by experimental method and thermodynamic model in this paper. It is indicated that the main phase of four alloys after aged under 623, 673, 773K for 200h are austenitic phase. The results of Thermo-Calc, which are based on Gibbs energy, show that the phases of four alloys under ihe same temperature as experimental method are single austenitic phase. The results of experimental method and Thermo-Calc agree well.展开更多
First principles study is reported for the band structures, site and angular momentum decomposed density of states. and the electronic charge density distributions in high-temperature structural materials D88-Ti5Si3 w...First principles study is reported for the band structures, site and angular momentum decomposed density of states. and the electronic charge density distributions in high-temperature structural materials D88-Ti5Si3 with the addition of low-rate metalloid: carbon, boron, nitrogen and oxygen. It shows that how the addition of metalloid atoms can stabilize Nowotny phase of Ti,Si3 from the viewpoint of the electron structure.展开更多
First-principles have been calculated to investigate the phase stabilities of the intermetallic phase of MgAl2 compounds by electronic structures and the charge distribution maps. The first-prin- ciples employed the n...First-principles have been calculated to investigate the phase stabilities of the intermetallic phase of MgAl2 compounds by electronic structures and the charge distribution maps. The first-prin- ciples employed the norm-conserving pseudo potential density functional method. They were calcu- lated both with the Ceperley and Alder data as parameterized by Perdew and Zunger(CA-PZ) of local-density approximation (LDA) and with the Perdew Burke Eruzerh (PBE) form of gradient-corrected approximation (GGA). A better method was found by comparing results from these two ultrasoft pseudo potentials. The present calculations indicate that LDA is better than GGA compared with references. This work also compared the lattice parameters, cohesive energy, formation enthalpy and electronic structure between theoretical results and experimental measurements (where available ). The calculations indicate that the unit cell volume get smaller after optimized and cohesive energy and formation enthalpy of C14 structure is the highest. The calculated structures are stable and the stability is aligned as C36 〈 C15 〈 C14.展开更多
The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these e...The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.展开更多
文摘The stability of the phases in equilibrium is calculated and discussed in order to analyse and predict the reactions in SiC and Si_3N_4 whisker formation.Equilibria among SiC,Si_3N_4,Si_2N_2O,SiO_2 and the gas phase are evaluated at different C activity,N_2 pressure,and temperature.According to the phase stability diagrams,Si_3N_4 whisker was formed with the increase of N_2 pressure and decrease of C activity;SiC whisker was stable with the increase of C activity and decrease of N_2 pressure.In order to control the impure phases during the whisker formation,O_2 partial pressure is the most important factor.
基金Project(Z2006F07)supported by Natural Science Foundation of Shandong Province,China
文摘The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium lattice constants of TixV1-xC show a nearly linear reduction with increasing addition of V.The elastic properties of TixV1-xC are varied by doping with V.The bulk modulus of Ti0.5V0.5C is larger than that of pure TiC,as well as Ti0.5V0.5C has the largest C44 among TixV1-xC(0≤x≤1),indicating that Ti0.5V0.5C has higher hardness than pure TiC.However,Ti0.5V0.5C presents brittleness based on the analysis of ductile/brittle behavior.The Ti0.5V0.5C carbide has the lowest formation energy,indicating that Ti0.5V0.5C is more stable than all other alloys.
基金Project(u0837601)supported by the National Natural Science Foundation of China
文摘First-principles calculations were carried out to investigate the structural stabilities and electronic properties of RhZr.The plane wave based pseudopotential method was used,in which both the local density approximation(LDA) and the generalized gradient approximation(GGA) implanted in the CASTEP code were employed.The internal positions of atoms in the unit cell were optimized and the ground state properties such as lattice parameter,density of state,cohesive energies and enthalpies of formation of ortho-RhZr and cubic-RhZr were calculated.The calculation results indicate that ortho-RhZr can form more easily than cubic-RhZr and the ortho-RhZr is more stable than cubic-RhZr.The density of states(DOS) reveals that the strong bonding in the Rh-Zr and Rh-Rh or Zr-Zr interaction chains accounts for the structural stability of ortho-RhZr and the hybridization between Rh-4d states and Zr-4d states is strong.
文摘An investigation of electronic property and high pressure phase stability of SmN has been conducted using first principles calculations based on density functional theory. The elec- tronic properties of Stun show a striking feature of a half metal, the majority-spin electrons are metallic and the minority-spin electrons are semiconducting. It was found that Stun undergoes a pressure-induced phase transition from NaCl-type (B1) to CsCl-type structure (B2) at 117 GPa. The elastic constants of Stun satisfy Born conditions at ambient pressure, indicating that B1 phase of SmN is mechanically stable at 0 GPa. The result of phonon spectra shows that B1 structure is dynamically stable at ambient pressure, which agrees with the conclusion derived from the elastic constants.
基金This work was financially supported by the National Natural Science Foundation of China(No.51401036)the Hunan Provincial Natural Science Foundation of China(No.14JJ3086),the Research Foundation of Education Bureau of Hunan Province(No.12B001)the Key Laboratory of Efficient and Clean Energy Utilization,College of Hunan Province(No.2015NGQ005).
文摘The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.
文摘Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.
基金Funded by the National Natural Science Foundation of China(No50078019)
文摘Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation.
基金This work is supported by the Key Technologies Research and Development Program of Liaoning Province(2013201018).
文摘Electronic structure and elastic properties of Al_(2)Y,Al_(3)Y,Al_(2)Gd and Al_(3)Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated,the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young's modulus(E),Poisson's ratio(ν)and anisotropic coefficient(A)were derived.The formation enthalpy shows that Al_(2)RE is more stable than Al_(3)RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.
基金the National Natural Science Foundation of China(No.51671020)the Fundamental Research Funds for the Central Universities(No.FRF-MP-19-013).
文摘High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents.The development of compositionally complex materials such as HEAs requires high-throughput experimental methods,which involves preparing many samples in a short time.Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of(Cr,Fe,V)-(Ta,W).First,we deposited the compositional gradient film by co-sputtering.Second,the mechanical properties and thermal stability of the(Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x(x=13-82)multiplebased-elemental(MBE)alloys were investigated.After the deposited wafer was annealed at 600℃for 0.5 h,the initial amorphous phase was transformed into a body-centered cubic(bcc)structure phase when x=33.Oxides were observed on the film surface when x was 72 and 82.Finally,the highest hardness of as-deposited films was found when x=18,and the maximum hardness of annealed films was found when x=33.
基金financial support provided by National Key Research and Development Program(No.2019YFA0210600)the National Natural Science Foundation of China(No.21905085+2 种基金No.51972107)the State Grid Shanghai Municipal Electric Power Company(No.B30970190001)the Innovative Research Groups of Hunan Province(No.2019JJ10001)
文摘The reversible storage of Zn^(2+)ions in Prussian blue analogues with typical aqueous solution was challenged by fast degradation and poor coulombic efficiency,while the mechanism is yet to be uncovered.This study correlates the performance of the nickel hexacyanoferrate to the dynamics of H_(2)O in the electrolyte and the associated phase stability of the electrode.It demonstrates severe Ni dissolution in conventional diluted aqueous electrolyte(1 M ZnSO^(4)or 1 M Zn(TFSI)^(2)),leading to structure collapse with the formation of an electrochemical inert phase.This is regarded as the descriptor for the fast decay of nickel hexacyanoferrate in diluted aqueous electrolyte.However,a well-preserved open framework for zinc storage was obtained in concentrated aqueous electrolyte(1 M Zn(TFSI)_(2)+21 M LiTFSI)—the H_(2)O activity is highly suppressed by extensive coordination—thus,reversible capacity of 60.2 m Ah g^(-1)over 1600 cycles could be delivered.
基金This work was supported by Priority Research Centre Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(NRF-2018R1A6A1A03024334)Also,this work was supported by Priority Research Centre Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(2020R1A2C2004880).
文摘In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and photoluminescence analysis of the bare CsPbI2Br and CsPb1-xSrxI2Br perovskite thin films were studied systematically to investigate the role of Sr2+ incorporation. It is observed that the surface morphology of the CsPbI2Br perovskite thin film has been improved by partial substitution of Pb2+ by Sr2+ which facilitates photoactive black phase-stabilization and defect passivation. The champion device having CsPb0.98Sr0.02I2Br composition exhibited a power conversion efficiency (PCE) of 16.61% which is much higher than the bare device (13.65%). Furthermore, our CsPb0.98Sr0.02I2Br-based devices maintain > 85% of its initial efficiency over 100 h in ambient conditions.
基金supported by the National Natural Science Foundation of China (Nos. 20646002 and 20676061)
文摘La0.75Sr0.25CryMn1-yO3 (LSCM) (y = 0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-programmed reduction, electrical conductivity, I-V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y 〉 0.4, the basic perovskite structure under the anode operating condition was sustained. A cell with 0.5-ram-thick scandia-stabilized zirconia electrolyte and La0.75Sr0.25CryMn1-yO3 anode delivered a Dower density of -15 mW-cm^-2 at 850℃.
基金the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs, Agriculture and Innovation and The Netherlands Ministry of Education, Culture and Science (Grant no. 053.70.011)
文摘The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.
基金supported by the National Key Research and Development Program of China(2019YFA0708502)the National Natural Science Foundation of China(42072052)。
文摘CaCO_(3)is an important component of marine sediments and one of the major deep-carbon carriers at subduction zones.Some subducted CaCO_(3)can be dissolved in subduction fluids and recycled back to the surface via arc volcanoes degassing.At the same time,there still remain large amounts of CaCO_(3)and its reaction products,which could be further transported into Earth's deep interior.These internal processes link atmosphere,hydrosphere and biosphere with the deep solid Earth,modifying the environments of our planet.In this review,we summarize current understanding from high pressure-temperature experiments and field petrological observations on the physical and chemical properties of CaCO_(3).In particular,the phase stability and reactions of CaCO_(3)largely control the migration and reservation of oxidized carbon in subducting slabs.Finally,we present several critical but unsolved questions on CaCO_(3)subducting in the deep mantle.
基金financially supported by the Russian Science Foundation (No.21-19-00097)。
文摘Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba_(2)Na_(3)(B_(3)O_(6))_(2)F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F into the BaB_(2)O_(4),Na BO_(2), and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F at 3 GPa and its decomposition into BaB_(2)O_(4), NaBO_(2), and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba_(2)Na_(3)(B_(3)O_(6))_(2)F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB_(2)O_(4).
文摘Phase stability of four different chemical component Fe-Cr-Mn(W, V) alloys are investigated by experimental method and thermodynamic model in this paper. It is indicated that the main phase of four alloys after aged under 623, 673, 773K for 200h are austenitic phase. The results of Thermo-Calc, which are based on Gibbs energy, show that the phases of four alloys under ihe same temperature as experimental method are single austenitic phase. The results of experimental method and Thermo-Calc agree well.
文摘First principles study is reported for the band structures, site and angular momentum decomposed density of states. and the electronic charge density distributions in high-temperature structural materials D88-Ti5Si3 with the addition of low-rate metalloid: carbon, boron, nitrogen and oxygen. It shows that how the addition of metalloid atoms can stabilize Nowotny phase of Ti,Si3 from the viewpoint of the electron structure.
基金Supported by the Natural Science Foundation of China(50874054)the Natural Science Joint Foundation of China(u0837601)the Natural Science Foundation of Yunnan Province of China(2009CD134)
文摘First-principles have been calculated to investigate the phase stabilities of the intermetallic phase of MgAl2 compounds by electronic structures and the charge distribution maps. The first-prin- ciples employed the norm-conserving pseudo potential density functional method. They were calcu- lated both with the Ceperley and Alder data as parameterized by Perdew and Zunger(CA-PZ) of local-density approximation (LDA) and with the Perdew Burke Eruzerh (PBE) form of gradient-corrected approximation (GGA). A better method was found by comparing results from these two ultrasoft pseudo potentials. The present calculations indicate that LDA is better than GGA compared with references. This work also compared the lattice parameters, cohesive energy, formation enthalpy and electronic structure between theoretical results and experimental measurements (where available ). The calculations indicate that the unit cell volume get smaller after optimized and cohesive energy and formation enthalpy of C14 structure is the highest. The calculated structures are stable and the stability is aligned as C36 〈 C15 〈 C14.
文摘The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.