基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属...基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属指认,并和实验光谱进行了对比.绘制了分子表面静电势,分析分子可能发生亲电和亲核反应的位点.利用含时密度泛函理论(Time-dependent density functional theory,TDDFT)计算了加替沙星分子的激发态,讨论了加替沙星分子内的电子跃迁.该研究为分析加替沙星的光谱和电子结构提供了理论基础.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized b...Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized by the elongation of very long fatty acids-4(ELOVL4) enzyme, expressed mainly in the brain, retina, skin, testes, and meibomian gland, where these fatty acids are found(Agbaga et al., 2008). Further, these organs exhibit tissuespecific VLC-PUFA and VLC-SFA biosynthesis and incorporation into complex lipids for specific functions. In the brain, skin, and Meibomian glands, the ELOVL4 mainly makes VLC-SFA, which are incorporated into complex sphingolipids. In the retina, the ELOVL4 makes VLC-PUFA that are incorporated into phosphatidylcholine, that are critical for visual function, while in testes and sperm, the VLC-PUFA are incorporated into sphingolipids that are critical for fertility(Yeboah et al., 2021).展开更多
Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset cluste...Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).展开更多
Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodu...Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.展开更多
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t...The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks.展开更多
There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Ne...There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Neural Regeneration Research(Sharma et al.,2024),because of oversight during final proof checking.The correct description should be“human-GABA receptor A-α1/β2/γ2L human embryonic kidney(HEK)recombinant cell line.”The authors apologize for any inconvenience this correction may cause for readers and editors of Neural Regeneration Research.展开更多
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration...Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.展开更多
There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons...There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons et al.,2024).Diverse sets of distinct molecular signaling pathways converge on the synapse to regulate synaptogenesis,synaptic function,and synaptic plasticity in brain regions and circuits through complex interactions organized by numerous multivalent protein scaffolds,including the family of proteins known as A-kinase anchoring proteins(AKAPs).展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
文摘基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属指认,并和实验光谱进行了对比.绘制了分子表面静电势,分析分子可能发生亲电和亲核反应的位点.利用含时密度泛函理论(Time-dependent density functional theory,TDDFT)计算了加替沙星分子的激发态,讨论了加替沙星分子内的电子跃迁.该研究为分析加替沙星的光谱和电子结构提供了理论基础.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by NEI/NIH R01 EY030513NIAMS/NIH R21-AR076035Multi-PI Team Science grant from Presbyterian Health Foundation。
文摘Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized by the elongation of very long fatty acids-4(ELOVL4) enzyme, expressed mainly in the brain, retina, skin, testes, and meibomian gland, where these fatty acids are found(Agbaga et al., 2008). Further, these organs exhibit tissuespecific VLC-PUFA and VLC-SFA biosynthesis and incorporation into complex lipids for specific functions. In the brain, skin, and Meibomian glands, the ELOVL4 mainly makes VLC-SFA, which are incorporated into complex sphingolipids. In the retina, the ELOVL4 makes VLC-PUFA that are incorporated into phosphatidylcholine, that are critical for visual function, while in testes and sperm, the VLC-PUFA are incorporated into sphingolipids that are critical for fertility(Yeboah et al., 2021).
基金supported by a grant from Telethon Foundation(grant No.GGP20056 to SB)The generation of Pcdh19 floxed mouse model was funded by Cariplo Foundation(grant No.2014-0972 to SB)。
文摘Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020).
文摘Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.
文摘The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks.
文摘There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Neural Regeneration Research(Sharma et al.,2024),because of oversight during final proof checking.The correct description should be“human-GABA receptor A-α1/β2/γ2L human embryonic kidney(HEK)recombinant cell line.”The authors apologize for any inconvenience this correction may cause for readers and editors of Neural Regeneration Research.
基金supported in part by NIH R01 NS100531,R01 NS103481NIH R21NS130241(to LD)+3 种基金Merit Review Award I01 BX002356,I01 BX003705 from the U.S.Department of Veterans AffairsIndiana Spinal Cord and Brain Injury Research Foundation(No.19919)Mari Hulman George Endowment Funds(to XMX)Indiana Spinal Cord&Brain Injury Research Fund from ISDH(to NKL and LD)。
文摘Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
基金supported by the National Institute of Mental Health (NIH/NIMH)the National Institute of Neurological Disorders and Stroke(NIH/NINDS):Grants#R21 MH132136 to FSN and R01 MH123700 and R01 NS040701 to MLD
文摘There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons et al.,2024).Diverse sets of distinct molecular signaling pathways converge on the synapse to regulate synaptogenesis,synaptic function,and synaptic plasticity in brain regions and circuits through complex interactions organized by numerous multivalent protein scaffolds,including the family of proteins known as A-kinase anchoring proteins(AKAPs).
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.