The reaction characteristics of phenolic hydroxyl group were studied under the conditions of direct coal liquefaction. 2-naphthol was used as a coal model compound in this study. Under the conditions of with and witho...The reaction characteristics of phenolic hydroxyl group were studied under the conditions of direct coal liquefaction. 2-naphthol was used as a coal model compound in this study. Under the conditions of with and without catalysts, a series of experiments were conducted at different temperatures, pressures and reaction time. Gas chromatography-mass spectrometry and gas chromatography were used to identify and quantify the reactants and products respectively. The conversion of 2-naphthol rises with the increase of reaction temperature, initial pressure and catalyst amount. The results indicated that tem- perature had a significant effect on 2-naphthol conversion, which promoted the dehydroxylation reaction. However, initial pressure had an important influence on the hydrogenation of 2-naphthol and naphthalene. The iron catalyst plays a significant role of cracking instead of hydrogenation. It is concluded that the harsh reaction conditions of high temperature, high pressure, and more catalyst are conducive to promoting dehydroxylation of 2-naphthol. The reaction mechanism was put forward based the experimental results, in which 2-tetralone was an intermediate.展开更多
In this study,high-gravity intensified heterogeneous catalytic ozonation is utilized for treatment of phenol-containing wastewater,and the kinetics of the direct reaction between ozone and phenol in the presence of ex...In this study,high-gravity intensified heterogeneous catalytic ozonation is utilized for treatment of phenol-containing wastewater,and the kinetics of the direct reaction between ozone and phenol in the presence of excess tertiary butanol(TBA)is investigated.It is revealed that the direct reaction between ozone and phenol in the rotating packed bed(RPB)follows the pseudo-first-order kinetics with a reaction rate constant higher than that in the conventional bubbling reactor(BR).Under different conditions of temperature,initial pH,high-gravity factor,and gaseous ozone concentration,the apparent reaction rate constant varies in the range of 0.0160–0.115 min-1.An empirical power-exponential model is established to characterize the effects of these parameters on the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation.展开更多
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named...The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols.展开更多
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results...A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.展开更多
The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included...The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.展开更多
In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation ...In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation system was constructed.The actual phenolic sewage was used as the treatment object.And the reaction conditions of the system were optimized,and the treatment effect was determined,while the non-catalytic system was used as a control group.At the same time,the influence of salt and ammonia nitrogen related water quality on the system was studied.The optimal reaction conditions for the treatment of phenolic wastewater covered:a catalyst dosage of 30 g/L,an ozone flow rate of 0.3 m3/h,a pH value of 8.80,and a reaction time of 15 minutes.Under these conditions,the phenol and COD removal rates of the system reached 98.7%and 49.4%,respectively,which were by 31.3 percentage points and 16.2 percentage points higher than that of the ozonation system alone.The salt and ammonia nitrogen in the sewage can reduce the oxidation effect of the system.When the salinity reached 10%and the ammonia nitrogen content reached 13 000 mg/L,the removal rate of phenol could be reduced by about 20%.The results of this paper have a reference value for phenol wastewater treatment engineering.展开更多
In this study,we prepared a series of tung oil phenolic foams(TPF)by a one-pot method.The FT-IR and 1H NMR spectra confirm the successful Friedel-Crafts grafting of phenol to the long-chain alkyl group in tung oil.Mod...In this study,we prepared a series of tung oil phenolic foams(TPF)by a one-pot method.The FT-IR and 1H NMR spectra confirm the successful Friedel-Crafts grafting of phenol to the long-chain alkyl group in tung oil.Modified TPFs exhibit enhanced mechanical properties,including compressive and flexural strengths of up to 0.278±0.036 MPa and 0.450±0.017 MPa,respectively,which represent increases of 68.75%and 86.72%over those of pure phenolic foam(PF).SEM spectra reveal the TPF microstructure to have uniform hexagonal cell morphology,narrower cell size distribution,and smaller mean cell size,suggesting enhanced mechanical properties.The TPF total smoke release decreased by 74.23%,indicating that the long alkyl chain significantly improves smoke suppression of the combusting foam.However,due to the flammability of the alkyl chains,the TPF limiting oxygen index decreases with increasing tung oil content.Moreover,TPF exhibits reduced thermal stability and high-temperature charring rate,elevated peak and mean heat release rates,and higher total heat release compared with pure PF.Therefore,future research will focus on the use of tung oil modified flame retardant to provide more robust phenolic foams.展开更多
The regioselective Mannich-type aminomethylation of hydroquinone afforded a nitrogen-containing compound, 2,5-bis-(morpholinomethyl)hydroquinone A, and its crystal structure was determined by single-crystal X-ray di...The regioselective Mannich-type aminomethylation of hydroquinone afforded a nitrogen-containing compound, 2,5-bis-(morpholinomethyl)hydroquinone A, and its crystal structure was determined by single-crystal X-ray diffraction. Crystal data for A: C16H24N2O4, Mr = 308.37, orthorhombic, space group Pbca, a = 10.479(4), b = 10.298(4), c = 14.865(5) ?, V = 1604.3(11) ?3, Z = 4, Dc = 1.277 g/cm3, F(000) = 664, μ = 0.092 mm-1, GOF = 1.078, the final R = 0.0508 and wR = 0.1075 for 1416 observed reflections with I > 2σ(I). There exist two intramolecular O–H…N hy- drogen bonds between the phenolic O atoms and the morpholine N donors and the morpholino rings assume the preferred chair conformation.展开更多
The main cause to the deactivation of ZSM-5 catalyst, used for oxidation of benzene to phenol (BTOP) by nitrous oxide, is that the carbon deposition on the catalyst surface blocks the mouth of pores of the catalyst.In...The main cause to the deactivation of ZSM-5 catalyst, used for oxidation of benzene to phenol (BTOP) by nitrous oxide, is that the carbon deposition on the catalyst surface blocks the mouth of pores of the catalyst.In the experiments, ZSM-5 catalyst was modified by chemical surface deposition of silicon, and then the effect of modification condition on the catalyst activation was studied. The catalyst samples were characterized by XRF,EPS, XRD, TEM, N2 adsorption at low temperature, pyridine adsorption-infrared technique and etc. All the above results show that the uniform SiO2 membrane can be formed on ZSM-5 crystal surface. The SiO2 membrane covers the acid centers on ZSM-5 surface to inhibit surface coking, to avoid or decrease the possibility of ZSM-5 pore blockage so that the catalyst activity and stability can be improved efficiently. The optimum siliconiting conditions determined by the experiments are as follows: 4% load of silanizing agent, volume (ml)/mass (g) ratio of hexane/ZSM-5=15/1, and 16 h of modification time. Compared with the samples without siliconiting treatment,the samples treated under the above optimum condition can increase the productivity of phenol by 14% for 3 h reaction time and by 41% for 6 h reaction time respectively.展开更多
Three new chiral monoanionic [ON] ancillary phenolate ligands with varying pendant arms have been synthesized in moderate to high yields (50% - 85%) via Mannich-type condensation reaction of chiral substituted phenol,...Three new chiral monoanionic [ON] ancillary phenolate ligands with varying pendant arms have been synthesized in moderate to high yields (50% - 85%) via Mannich-type condensation reaction of chiral substituted phenol, formaldehyde and (+)-bis-[(R)-1-phenylethyl]amine. These new organic compounds were fully characterized via nuclear magnetic resonance spectroscopy (1H and 13C) and elemental analysis. The newly synthesized ligands are suitable candidates for metal-catalyzed ring-opening of lactones and asymmetric catalysis.展开更多
A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main ob...A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.展开更多
This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used...This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used to prepare tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 %w/w. The kinetic values of thermal curing of Phenol-formaldehyde (PF), tannin-formaldehyde and tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 wt% from TF were studied by monitoring the weight changes which occurred in the samples weight during thermosetting process at four temperature (160°C, 180°C, 200°C and 220°C). The total evolved condensation products from curing reactions were about 32% - 36% per sample weight, and the rate of curing reaction constants was ranged between 0.163 %wt·min-1 at 160°C and 0.50 %wt·min-1 at 220°C. The path of TFPF curing and kinetic values indicated that these resins could be cured with the behavior and velocity comparable to that of PF. The activation energy of TFPF cross-linking was higher than that of PF. Increasing TF level to 20% and 40% into PF can reduce the amount of PF curing reactions density and weight loss percentage. The global kinetic properties showed that the TF participated in the thermoset network formation with acceptable activity and performance. The general results of this paper show that the TF is a suitable alternative material for partially replacement into PF resin.展开更多
文摘The reaction characteristics of phenolic hydroxyl group were studied under the conditions of direct coal liquefaction. 2-naphthol was used as a coal model compound in this study. Under the conditions of with and without catalysts, a series of experiments were conducted at different temperatures, pressures and reaction time. Gas chromatography-mass spectrometry and gas chromatography were used to identify and quantify the reactants and products respectively. The conversion of 2-naphthol rises with the increase of reaction temperature, initial pressure and catalyst amount. The results indicated that tem- perature had a significant effect on 2-naphthol conversion, which promoted the dehydroxylation reaction. However, initial pressure had an important influence on the hydrogenation of 2-naphthol and naphthalene. The iron catalyst plays a significant role of cracking instead of hydrogenation. It is concluded that the harsh reaction conditions of high temperature, high pressure, and more catalyst are conducive to promoting dehydroxylation of 2-naphthol. The reaction mechanism was put forward based the experimental results, in which 2-tetralone was an intermediate.
基金supported by the Fund for Shanxi Province Higher Education“1331 Project”for Improving Quality and Efficiency Construction(nuc2021-006)Key Research&Development Plan of Shanxi Province(201903D321059)+1 种基金Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200004)Transformation and Cultivation Projects of Scientific and Technological Achievements in Universities of Shanxi Province Institutions(2020CG040).
文摘In this study,high-gravity intensified heterogeneous catalytic ozonation is utilized for treatment of phenol-containing wastewater,and the kinetics of the direct reaction between ozone and phenol in the presence of excess tertiary butanol(TBA)is investigated.It is revealed that the direct reaction between ozone and phenol in the rotating packed bed(RPB)follows the pseudo-first-order kinetics with a reaction rate constant higher than that in the conventional bubbling reactor(BR).Under different conditions of temperature,initial pH,high-gravity factor,and gaseous ozone concentration,the apparent reaction rate constant varies in the range of 0.0160–0.115 min-1.An empirical power-exponential model is established to characterize the effects of these parameters on the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation.
基金the National Key Research and Development Program(2021YFC3001103)the National Natural Science Foundation(22278209,22178165,21921006,22208149)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20211262,BK20220354)a project funded by the priority academic program development of Jiangsu higher education institutions(PAPD)of China。
文摘The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols.
基金Project supported by the Technology Innovation Project of University (No. 705013)
文摘A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
基金supported by the Key Program of the National Natural Science Foundation of China(30930074)
文摘The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.
基金financially supported by the Ministry of Science and Technology of the People’s Republic of China [Grant No. 2017YFC1404605]
文摘In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation system was constructed.The actual phenolic sewage was used as the treatment object.And the reaction conditions of the system were optimized,and the treatment effect was determined,while the non-catalytic system was used as a control group.At the same time,the influence of salt and ammonia nitrogen related water quality on the system was studied.The optimal reaction conditions for the treatment of phenolic wastewater covered:a catalyst dosage of 30 g/L,an ozone flow rate of 0.3 m3/h,a pH value of 8.80,and a reaction time of 15 minutes.Under these conditions,the phenol and COD removal rates of the system reached 98.7%and 49.4%,respectively,which were by 31.3 percentage points and 16.2 percentage points higher than that of the ozonation system alone.The salt and ammonia nitrogen in the sewage can reduce the oxidation effect of the system.When the salinity reached 10%and the ammonia nitrogen content reached 13 000 mg/L,the removal rate of phenol could be reduced by about 20%.The results of this paper have a reference value for phenol wastewater treatment engineering.
基金the financial support from the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(No.CAFYBB2018MA001)the National Natural Science Foundation of China(Grant No.31700499).
文摘In this study,we prepared a series of tung oil phenolic foams(TPF)by a one-pot method.The FT-IR and 1H NMR spectra confirm the successful Friedel-Crafts grafting of phenol to the long-chain alkyl group in tung oil.Modified TPFs exhibit enhanced mechanical properties,including compressive and flexural strengths of up to 0.278±0.036 MPa and 0.450±0.017 MPa,respectively,which represent increases of 68.75%and 86.72%over those of pure phenolic foam(PF).SEM spectra reveal the TPF microstructure to have uniform hexagonal cell morphology,narrower cell size distribution,and smaller mean cell size,suggesting enhanced mechanical properties.The TPF total smoke release decreased by 74.23%,indicating that the long alkyl chain significantly improves smoke suppression of the combusting foam.However,due to the flammability of the alkyl chains,the TPF limiting oxygen index decreases with increasing tung oil content.Moreover,TPF exhibits reduced thermal stability and high-temperature charring rate,elevated peak and mean heat release rates,and higher total heat release compared with pure PF.Therefore,future research will focus on the use of tung oil modified flame retardant to provide more robust phenolic foams.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 013606111)
文摘The regioselective Mannich-type aminomethylation of hydroquinone afforded a nitrogen-containing compound, 2,5-bis-(morpholinomethyl)hydroquinone A, and its crystal structure was determined by single-crystal X-ray diffraction. Crystal data for A: C16H24N2O4, Mr = 308.37, orthorhombic, space group Pbca, a = 10.479(4), b = 10.298(4), c = 14.865(5) ?, V = 1604.3(11) ?3, Z = 4, Dc = 1.277 g/cm3, F(000) = 664, μ = 0.092 mm-1, GOF = 1.078, the final R = 0.0508 and wR = 0.1075 for 1416 observed reflections with I > 2σ(I). There exist two intramolecular O–H…N hy- drogen bonds between the phenolic O atoms and the morpholine N donors and the morpholino rings assume the preferred chair conformation.
文摘The main cause to the deactivation of ZSM-5 catalyst, used for oxidation of benzene to phenol (BTOP) by nitrous oxide, is that the carbon deposition on the catalyst surface blocks the mouth of pores of the catalyst.In the experiments, ZSM-5 catalyst was modified by chemical surface deposition of silicon, and then the effect of modification condition on the catalyst activation was studied. The catalyst samples were characterized by XRF,EPS, XRD, TEM, N2 adsorption at low temperature, pyridine adsorption-infrared technique and etc. All the above results show that the uniform SiO2 membrane can be formed on ZSM-5 crystal surface. The SiO2 membrane covers the acid centers on ZSM-5 surface to inhibit surface coking, to avoid or decrease the possibility of ZSM-5 pore blockage so that the catalyst activity and stability can be improved efficiently. The optimum siliconiting conditions determined by the experiments are as follows: 4% load of silanizing agent, volume (ml)/mass (g) ratio of hexane/ZSM-5=15/1, and 16 h of modification time. Compared with the samples without siliconiting treatment,the samples treated under the above optimum condition can increase the productivity of phenol by 14% for 3 h reaction time and by 41% for 6 h reaction time respectively.
文摘Three new chiral monoanionic [ON] ancillary phenolate ligands with varying pendant arms have been synthesized in moderate to high yields (50% - 85%) via Mannich-type condensation reaction of chiral substituted phenol, formaldehyde and (+)-bis-[(R)-1-phenylethyl]amine. These new organic compounds were fully characterized via nuclear magnetic resonance spectroscopy (1H and 13C) and elemental analysis. The newly synthesized ligands are suitable candidates for metal-catalyzed ring-opening of lactones and asymmetric catalysis.
文摘A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.
文摘This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used to prepare tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 %w/w. The kinetic values of thermal curing of Phenol-formaldehyde (PF), tannin-formaldehyde and tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 wt% from TF were studied by monitoring the weight changes which occurred in the samples weight during thermosetting process at four temperature (160°C, 180°C, 200°C and 220°C). The total evolved condensation products from curing reactions were about 32% - 36% per sample weight, and the rate of curing reaction constants was ranged between 0.163 %wt·min-1 at 160°C and 0.50 %wt·min-1 at 220°C. The path of TFPF curing and kinetic values indicated that these resins could be cured with the behavior and velocity comparable to that of PF. The activation energy of TFPF cross-linking was higher than that of PF. Increasing TF level to 20% and 40% into PF can reduce the amount of PF curing reactions density and weight loss percentage. The global kinetic properties showed that the TF participated in the thermoset network formation with acceptable activity and performance. The general results of this paper show that the TF is a suitable alternative material for partially replacement into PF resin.