Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high sali...Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.展开更多
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
As an important link in the development of modern quality education,art education is one of the methods to guide students to have a diversified vision.Under the background of multiculturalism,we need to explore the co...As an important link in the development of modern quality education,art education is one of the methods to guide students to have a diversified vision.Under the background of multiculturalism,we need to explore the connotation and value of art education with the concept of“three highs and four new,”so that students can realize interdisciplinary and cross-cultural cognition through an immersive experience and practical operation in a wide range of multicultural situations,and to develop the knowledge of art education with the concept of“three highs and four new.”Based on the multicultural background,this paper focuses on the integration of multiculturalism into the reform practice of“student-centered”in colleges and universities,so as to cultivate art talents adapted to the multicultural background,in order to achieve the great mission of“three highs and four new”and better lead the innovative development of art education in colleges and universities.展开更多
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ...The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
The increase of the critical temperature Tc for superconductivity in Al1−x(SiO2)x cermets with increasing x correlates with a decrease of the electron density n due to electron transfer, expressed by Tc/Tc,max=1−γ⋅n2...The increase of the critical temperature Tc for superconductivity in Al1−x(SiO2)x cermets with increasing x correlates with a decrease of the electron density n due to electron transfer, expressed by Tc/Tc,max=1−γ⋅n2(*). Behind the formula (*) and Tc/Tc,max=1−82.6(P−0.16)2, which is characteristic of hole-doped cuprat high-temperature superconductors, lies a general phenomenon, namely electron transfer, which equalizes potential differences in the material and leads to a strong reduction of n. P is the fraction of holes filled by the transferred electrons. A quantitative consideration gives Tc(x)/Tc,max=1−(1−x1−x0)2(**), where x is the doping concentration and x0 is the concentration at which superconductivity begins. At x=xmax=1the electron source is completely depleted and with further growth of x the hole density p starts to increase and Tc decreases until superconductivity disappears completely at x=2−x0. Taking into account the formula (**), the hypothesis arose that for x>xmaxTc/Tc,max=1−γ⋅p2(***), an analogue of the formula (*), and that superconductivity is possible not only by electron-Cooper pairs but also by paired holes. The mechanisms described here for HTSC suggest an analogy to the physics of semiconductors and that of nanocomposites: Electron-hole duality. The “P=1/8” anomaly in YBa2Cu3O6+x is caused by the simultaneous presence of electrons and holes, a consequence of incomplete electron transfer.展开更多
The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributi...The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated with an idealized distribution of the SST anomalies in the tropical western Pacific.The simulated results show that the negative anomalies of SST in the tropical western Pacific have a significant effect on the formation and maintenance of the blocking high over the northeastern Asia.展开更多
Previous work showed that some tropical cyclones (TCs) in the western Pacific Ocean undergo sudden track reversal, and the onset, maintenance and decay of blocking highs (BHs) coexisted with 19 of the studied TCs ...Previous work showed that some tropical cyclones (TCs) in the western Pacific Ocean undergo sudden track reversal, and the onset, maintenance and decay of blocking highs (BHs) coexisted with 19 of the studied TCs with sudden track reversal. In these cases, the phase relations between the BH, the continental high (CH), the subtropical high (SH) and the suddenly reversed TCs could be classified into types A, B, C and D. Types C and D were the focal point of this follow-up study, in which Typhoon Pabuk (2007) and Lupit (2009) were employed to conduct numerical simulations. The results showed that the reversed tracks of Pabuk (2007) and Lupit (2009) could have been affected by the BH, particularly in terms of the turning location and the trend of movement after turning. Specifically, the two main features for Pabuk (2007) in the BH perturbations were the deflection of its turning point and a distinct anticlockwise rotation. Lupit (2009) deviated to the southwest and finally made landfall in the Philippines, or experienced further eastward movement, in the perturbed BH. The impact mechanisms can be attributed to the change in the vorticity field transported from the BH, leading to an intensity variation of midlatitude systems. BHs may have a positive feedback effect on the strength of the westerly trough (TR), as indicated by a weakened and strengthened TR corresponding to negative and positive BH perturbations, respectively.展开更多
The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excel...The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excellent properties such as improved hardness and wear resistance along with sustained corrosion resistance. The concentrated nitrogen via SPN process was injected to form S-phase with time at 713 K. This study was carried out under the conditions of 44 at% of nitrogen injection, which was higher than 25 at% known as the condition of no precipitation of S-phase formed by the SPN process, and 20 K higher than the maximum temperature without precipitation phase. The hardness analysis of stainless steel sample treated by the SPN process at 713 K showed a much higher value than the typical nitriding hardness at a depth of lower nitrogen than the maximum nitrogen concentration. The SPN 20 hr treated specimen showed the average value of 2339 HV while 40 hr showed the average value of 2215 HV. The result is attributed to the concentrated nitrogen formed in the SPN process reacting with the alloying elements contained in the base material to form fine precipitates, thus producing a synergy effect of the extreme hardening effect;that is, the movement of precipitates and dislocations due to the GP-zone (Guinier-Preston zone).展开更多
High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. How...High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre...This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions.展开更多
Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]...Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.展开更多
Based on the reanalysis data of global 500hPa geopotential height (NCEP NCAR CDAS-1) and tropical Pacific SSTs, the characteristics of global subtropical highs and their response to tropical eastern Pacific SST are i...Based on the reanalysis data of global 500hPa geopotential height (NCEP NCAR CDAS-1) and tropical Pacific SSTs, the characteristics of global subtropical highs and their response to tropical eastern Pacific SST are investigated. Results show that global subtropical highs respond to SST consistently. Subtropical high intensity correlates to the 3 months leading SST maximally. The relationship between SST and 500hPa height stands out in low latitudes. The time for 500hPa height reaching maximuxn correlation to SST is 2 months later in latitude of 10 degree and 9 months in latitude of 30 degree than equatorial zone. And the response of atmospheric circulation over extratropic performs as wave train, and the response is more significant in the condition of warmer SST. Persistence of SSTs and subtropical highs changes obviously from season to season. Minimum persistence of subtropical highs in September and October may relate to the low persistence of SSTs in August and September.展开更多
The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian in...The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.展开更多
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
BACKGROUND Helicobacter pylori(H.pylori)eradication rates have fallen globally,likely in large part due to increasing antibiotic resistance to traditional therapy.In areas of high clarithromycin and metronidazole resi...BACKGROUND Helicobacter pylori(H.pylori)eradication rates have fallen globally,likely in large part due to increasing antibiotic resistance to traditional therapy.In areas of high clarithromycin and metronidazole resistance such as ours,Maastricht VI guidelines suggest high dose amoxicillin dual therapy(HDADT)can be considered,subject to evidence for local efficacy.In this study we assess efficacy of HDADT therapy for H.pylori eradication in an Irish cohort.AIM To assess the efficacy of HDADT therapy for H.pylori eradication in an Irish cohort as both first line,and subsequent therapy for patients diagnosed with H.pylori.METHODS All patients testing positive for H.pylori in a tertiary centre were treated prospectively with HDADT(amoxicillin 1 g tid and esomeprazole 40 mg bid×14 d)over a period of 8 months.Eradication was confirmed with Urea Breath Test at least 4 wk after cessation of therapy.A delta-over-baseline>4%was considered positive.Patient demographics and treatment outcomes were recorded,analysed and controlled for basic demographics and prior H.pylori treatment.RESULTS One hundred and ninety-eight patients were identified with H.pylori infection,10 patients were excluded due to penicillin allergy and 38 patients refused follow up testing.In all 139 were included in the analysis,55%(n=76)were female,mean age was 46.6 years.Overall,93(67%)of patients were treatment-naïve and 46(33%)had received at least one previous course of treatment.The groups were statistically similar.Self-reported compliance with HDADT was 97%,mild side-effects occurred in 7%.There were no serious adverse drug reactions.Overall the eradication rate for our cohort was 56%(78/139).Eradication rates were worse for those with previous treatment[43%(20/46)vs 62%(58/93),P=0.0458,odds ratio=2.15].Age and Gender had no effect on eradication status.CONCLUSION Overall eradication rates with HDADT were disappointing.Despite being a simple and possibly better tolerated regime,these results do not support its routine use in a high dual resistance country.Further investigation of other regimens to achieve the>90%eradication target is needed.展开更多
Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelera...Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony.展开更多
基金support of the National Natural Science Foundation of China(No.52120105007)the National Key Research and Development Program of China(2019Y FA0708700)are gratefully acknowledged.
文摘Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金2022 Hunan Provincial General Higher Education School Teaching Reform Research Key Project“Research and Practice of Innovative Art Talent Cultivation Mode in Local Comprehensive Colleges and Universities Under the Strategy of‘Three Highs and Four New’”(Project number:HNJG-2022-0108)。
文摘As an important link in the development of modern quality education,art education is one of the methods to guide students to have a diversified vision.Under the background of multiculturalism,we need to explore the connotation and value of art education with the concept of“three highs and four new,”so that students can realize interdisciplinary and cross-cultural cognition through an immersive experience and practical operation in a wide range of multicultural situations,and to develop the knowledge of art education with the concept of“three highs and four new.”Based on the multicultural background,this paper focuses on the integration of multiculturalism into the reform practice of“student-centered”in colleges and universities,so as to cultivate art talents adapted to the multicultural background,in order to achieve the great mission of“three highs and four new”and better lead the innovative development of art education in colleges and universities.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3804500)the National Natural Science Foundation of China(Grant No.52202352,22335006)+4 种基金the Shanghai Municipal Health Commission(Grant No.20224Y0010)the CAMS Innovation Fund for Medical Sciences(Grant No.2021-I2M-5-012)the Basic Research Program of Shanghai Municipal Government(Grant No.21JC1406000)the Fundamental Research Funds for the Central Universities(Grant No.22120230237,2023-3-YB-11,22120220618)the Basic Research Program of Shanghai Municipal Government(23DX1900200).
文摘The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
文摘The increase of the critical temperature Tc for superconductivity in Al1−x(SiO2)x cermets with increasing x correlates with a decrease of the electron density n due to electron transfer, expressed by Tc/Tc,max=1−γ⋅n2(*). Behind the formula (*) and Tc/Tc,max=1−82.6(P−0.16)2, which is characteristic of hole-doped cuprat high-temperature superconductors, lies a general phenomenon, namely electron transfer, which equalizes potential differences in the material and leads to a strong reduction of n. P is the fraction of holes filled by the transferred electrons. A quantitative consideration gives Tc(x)/Tc,max=1−(1−x1−x0)2(**), where x is the doping concentration and x0 is the concentration at which superconductivity begins. At x=xmax=1the electron source is completely depleted and with further growth of x the hole density p starts to increase and Tc decreases until superconductivity disappears completely at x=2−x0. Taking into account the formula (**), the hypothesis arose that for x>xmaxTc/Tc,max=1−γ⋅p2(***), an analogue of the formula (*), and that superconductivity is possible not only by electron-Cooper pairs but also by paired holes. The mechanisms described here for HTSC suggest an analogy to the physics of semiconductors and that of nanocomposites: Electron-hole duality. The “P=1/8” anomaly in YBa2Cu3O6+x is caused by the simultaneous presence of electrons and holes, a consequence of incomplete electron transfer.
基金This study was supported by the major applied project 'KY85-10' of Chinese Academy of Sciences
文摘The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated with an idealized distribution of the SST anomalies in the tropical western Pacific.The simulated results show that the negative anomalies of SST in the tropical western Pacific have a significant effect on the formation and maintenance of the blocking high over the northeastern Asia.
基金supported by the National Natural Science Foundation of China(Grant No.41230421)the 973 project(Grant Nos.2015CB452802 and 2013CB430101)of the Ministry of Science and Technology,China
文摘Previous work showed that some tropical cyclones (TCs) in the western Pacific Ocean undergo sudden track reversal, and the onset, maintenance and decay of blocking highs (BHs) coexisted with 19 of the studied TCs with sudden track reversal. In these cases, the phase relations between the BH, the continental high (CH), the subtropical high (SH) and the suddenly reversed TCs could be classified into types A, B, C and D. Types C and D were the focal point of this follow-up study, in which Typhoon Pabuk (2007) and Lupit (2009) were employed to conduct numerical simulations. The results showed that the reversed tracks of Pabuk (2007) and Lupit (2009) could have been affected by the BH, particularly in terms of the turning location and the trend of movement after turning. Specifically, the two main features for Pabuk (2007) in the BH perturbations were the deflection of its turning point and a distinct anticlockwise rotation. Lupit (2009) deviated to the southwest and finally made landfall in the Philippines, or experienced further eastward movement, in the perturbed BH. The impact mechanisms can be attributed to the change in the vorticity field transported from the BH, leading to an intensity variation of midlatitude systems. BHs may have a positive feedback effect on the strength of the westerly trough (TR), as indicated by a weakened and strengthened TR corresponding to negative and positive BH perturbations, respectively.
文摘The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excellent properties such as improved hardness and wear resistance along with sustained corrosion resistance. The concentrated nitrogen via SPN process was injected to form S-phase with time at 713 K. This study was carried out under the conditions of 44 at% of nitrogen injection, which was higher than 25 at% known as the condition of no precipitation of S-phase formed by the SPN process, and 20 K higher than the maximum temperature without precipitation phase. The hardness analysis of stainless steel sample treated by the SPN process at 713 K showed a much higher value than the typical nitriding hardness at a depth of lower nitrogen than the maximum nitrogen concentration. The SPN 20 hr treated specimen showed the average value of 2339 HV while 40 hr showed the average value of 2215 HV. The result is attributed to the concentrated nitrogen formed in the SPN process reacting with the alloying elements contained in the base material to form fine precipitates, thus producing a synergy effect of the extreme hardening effect;that is, the movement of precipitates and dislocations due to the GP-zone (Guinier-Preston zone).
基金supported by grants from the Key Project of Guangzhou (Grant No.202103000085)National Natural Science Foundation of China (Grant No.31902014)+1 种基金Guangzhou Science and Technology Project (Grant No.202102020502)Fruit and Vegetable Industry System Innovation Team Project of Guangdong (Grant No.2021KJ110)。
文摘High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金supported by the National Natural Science Foundation of China(Nos.52004015,51874014,and 52311530070)the fellowship of China National Postdoctoral Program for Innovative Talents(No.BX2021033)+1 种基金the fellowship of China Postdoctoral Science Foundation(Nos.2021M700389 and 2023T0025)the Fundamental Research Funds for the Central Universities of China(No.FRF-IDRY-20-003,Interdisciplinary Research Project for Young Teachers of USTB).
文摘This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions.
文摘Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.
基金supported by National Natural Science Foundation of China (49635190).
文摘Based on the reanalysis data of global 500hPa geopotential height (NCEP NCAR CDAS-1) and tropical Pacific SSTs, the characteristics of global subtropical highs and their response to tropical eastern Pacific SST are investigated. Results show that global subtropical highs respond to SST consistently. Subtropical high intensity correlates to the 3 months leading SST maximally. The relationship between SST and 500hPa height stands out in low latitudes. The time for 500hPa height reaching maximuxn correlation to SST is 2 months later in latitude of 10 degree and 9 months in latitude of 30 degree than equatorial zone. And the response of atmospheric circulation over extratropic performs as wave train, and the response is more significant in the condition of warmer SST. Persistence of SSTs and subtropical highs changes obviously from season to season. Minimum persistence of subtropical highs in September and October may relate to the low persistence of SSTs in August and September.
基金This work was supported by the National Key Research andDevelopment Programof China(2021YFD1800200 and2021YFC2301700).
文摘The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
文摘BACKGROUND Helicobacter pylori(H.pylori)eradication rates have fallen globally,likely in large part due to increasing antibiotic resistance to traditional therapy.In areas of high clarithromycin and metronidazole resistance such as ours,Maastricht VI guidelines suggest high dose amoxicillin dual therapy(HDADT)can be considered,subject to evidence for local efficacy.In this study we assess efficacy of HDADT therapy for H.pylori eradication in an Irish cohort.AIM To assess the efficacy of HDADT therapy for H.pylori eradication in an Irish cohort as both first line,and subsequent therapy for patients diagnosed with H.pylori.METHODS All patients testing positive for H.pylori in a tertiary centre were treated prospectively with HDADT(amoxicillin 1 g tid and esomeprazole 40 mg bid×14 d)over a period of 8 months.Eradication was confirmed with Urea Breath Test at least 4 wk after cessation of therapy.A delta-over-baseline>4%was considered positive.Patient demographics and treatment outcomes were recorded,analysed and controlled for basic demographics and prior H.pylori treatment.RESULTS One hundred and ninety-eight patients were identified with H.pylori infection,10 patients were excluded due to penicillin allergy and 38 patients refused follow up testing.In all 139 were included in the analysis,55%(n=76)were female,mean age was 46.6 years.Overall,93(67%)of patients were treatment-naïve and 46(33%)had received at least one previous course of treatment.The groups were statistically similar.Self-reported compliance with HDADT was 97%,mild side-effects occurred in 7%.There were no serious adverse drug reactions.Overall the eradication rate for our cohort was 56%(78/139).Eradication rates were worse for those with previous treatment[43%(20/46)vs 62%(58/93),P=0.0458,odds ratio=2.15].Age and Gender had no effect on eradication status.CONCLUSION Overall eradication rates with HDADT were disappointing.Despite being a simple and possibly better tolerated regime,these results do not support its routine use in a high dual resistance country.Further investigation of other regimens to achieve the>90%eradication target is needed.
基金supported by National Natural Science Foundation of China(Grant Nos.32072614 and 31972452)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2020MC146 and ZR2020QC160)Seed improvement project of Shandong Province(Grant No.2020LZGC011-1-4)。
文摘Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony.