Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phis...Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning(ML)models—Artificial Neural Networks(ANN),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories.Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%.On the other hand,LSTM shows the lowest accuracy of 96%.These findings underscore the potential of ML techniques in enhancing phishing detection systems and bolstering cybersecurity measures against evolving phishing tactics,offering a promising avenue for safeguarding sensitive information and online security.展开更多
Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such atta...Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such attacks.Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users.Machine and deep learning and other methods were used to design detection methods for these attacks.However,there is still a need to enhance detection accuracy.Optimization of an ensemble classification method for phishing website(PW)detection is proposed in this study.A Genetic Algo-rithm(GA)was used for the proposed method optimization by tuning several ensemble Machine Learning(ML)methods parameters,including Random Forest(RF),AdaBoost(AB),XGBoost(XGB),Bagging(BA),GradientBoost(GB),and LightGBM(LGBM).These were accomplished by ranking the optimized classi-fiers to pick out the best classifiers as a base for the proposed method.A PW data-set that is made up of 4898 PWs and 6157 legitimate websites(LWs)was used for this study's experiments.As a result,detection accuracy was enhanced and reached 97.16 percent.展开更多
文摘Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning(ML)models—Artificial Neural Networks(ANN),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories.Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%.On the other hand,LSTM shows the lowest accuracy of 96%.These findings underscore the potential of ML techniques in enhancing phishing detection systems and bolstering cybersecurity measures against evolving phishing tactics,offering a promising avenue for safeguarding sensitive information and online security.
基金This research has been funded by the Scientific Research Deanship at University of Ha'il-Saudi Arabia through Project Number RG-20023.
文摘Phishing attacks are security attacks that do not affect only individuals’or organizations’websites but may affect Internet of Things(IoT)devices and net-works.IoT environment is an exposed environment for such attacks.Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users.Machine and deep learning and other methods were used to design detection methods for these attacks.However,there is still a need to enhance detection accuracy.Optimization of an ensemble classification method for phishing website(PW)detection is proposed in this study.A Genetic Algo-rithm(GA)was used for the proposed method optimization by tuning several ensemble Machine Learning(ML)methods parameters,including Random Forest(RF),AdaBoost(AB),XGBoost(XGB),Bagging(BA),GradientBoost(GB),and LightGBM(LGBM).These were accomplished by ranking the optimized classi-fiers to pick out the best classifiers as a base for the proposed method.A PW data-set that is made up of 4898 PWs and 6157 legitimate websites(LWs)was used for this study's experiments.As a result,detection accuracy was enhanced and reached 97.16 percent.