期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Overexpression of rice F-box phloem protein gene OsPP12-A13 confers salinity tolerance in Arabidopsis
1
作者 CHUNKUN FAN YONGPENG ZHANG +5 位作者 CHUNBAO YANG YAWEI TANG JI QU BU JIE DEJI QUZHEN LIYUN GAO 《BIOCELL》 SCIE 2021年第4期1121-1135,共15页
Salinity is a serious challenge for agriculture production by limiting the arable land.Rice is a major staple food crop but very sensitive to salt stress.In this study,we used Arabidopsis for the functional characteri... Salinity is a serious challenge for agriculture production by limiting the arable land.Rice is a major staple food crop but very sensitive to salt stress.In this study,we used Arabidopsis for the functional characterization of a rice F-box gene LOC_Os04g48270(OsPP12-A13)under salinity stress.OsPP12-A13 is a nuclear-localized protein that is strongly upregulated under salinity stress in rice and showed the highest expression in the stem,followed by roots and leaves.Two types of transgenic lines for OsPP12-A13 were generated,including constitutive tissue over-expression using the CaMV35S promoter and phloem specific over-expression using the pSUC2 promoter.Both types of transgenic plants showed salinity tolerance at the seedling stage through higher germination percentage and longer root length,as compared to control plants under salt stress in MS medium.Both the transgenic plants also exhibited salt tolerance at the reproductive stage through higher survival rate,plant dry biomass,and seed yield per plant as compared to control plants.Determination of Na+concentration in leaves,stem and roots of salt-stressed transgenic plants showed that Na^(+) concentration was less in leaf and stem as compared to roots.The opposite was observed in wild type stressed plants,suggesting that OsPP12-A13 may be involved in Na+transport from root to leaf.Transgenic plants also displayed less ROS levels and higher activities of peroxidase and glutathione S-transferase along with upregulation of their corresponding genes as compared to control plants which further indicated a role of OsPP12-A13 in maintaining ROS homeostasis under salt stress.Further,the non-significant difference between the transgenic lines obtained from the two vectors highlighted that OsPP12-A13 principally works in the phloem.Taken together,this study showed that OsPP12-A13 improves salt tolerance in rice,possibly by affecting Na^(+) transport and ROS homeostasis. 展开更多
关键词 ANTIOXIDANTS Rice phloem protein Reactive oxygen species Salt stress Na^(+)transport
下载PDF
The Potato Sucrose Transporter StSUT1 Interacts with a DRM-Associated Protein Disulfide Isomerase 被引量:7
2
作者 Undine Krugel Hong-Xia He +5 位作者 Konstanze Gier Jana Reins Izabela Chincinska Bernhard Grimm Waltraud X. Schulze Christina Kuhn 《Molecular Plant》 SCIE CAS CSCD 2012年第1期43-62,共20页
Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well a... Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUTl-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiq- uitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane- associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUTl-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was ob- served between the StSUTl-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUTl-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed. 展开更多
关键词 Protein-protein interactions phloem proteins vesicle trafficking endocytosis.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部