Lead halide perovskites have some unique properties which are very promising for optoelectronic applications such as solar cells. LEDs and lasers. One important and expected application of perovskite halide semiconduc...Lead halide perovskites have some unique properties which are very promising for optoelectronic applications such as solar cells. LEDs and lasers. One important and expected application of perovskite halide semiconductors is solar cell operation including hot carriers. This advanced solar cell concept allows overcoming the Shockley-Queisser efficiency limit, thereby achieving energy conversion efficiency as high as 66% by extracting hot carriers. Understanding ultrafast photoexcited carrier dynamics and extraction in lead halide perovskites is crucial for these applications. Here, we clarify the hot carrier cooling and transfer dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy and Al2O3, poly(3-hexylthiophene-2,5-diyl) (P3HT) and TiO2 as selective contacts. We find that slow hot carrier cooling occurs on a timescale longer than 10 ps in the cases of CsPbI3/AI203 and CsPbI3/TiO2, which is attributed to hot phonon bottleneck for the high photoexcited carrier density. An efficient ultrafast hole transfer from CsPbI3 to the P3HT hole extracting layer is observed. These results suggest that hot holes can be extracted by appropriate selective contacts before energy dissipation into the halide perovskite lattice and that CsPbl3 has a potential for hot carrier solar cell applications.展开更多
The kinetic of low-temperature carrier and lattice of lead-halide perovskite is yet to be fully understood.In this work,we investigate the steady-state photoluminescences(PLs)of CsPbI_(3)at the environmental temperatu...The kinetic of low-temperature carrier and lattice of lead-halide perovskite is yet to be fully understood.In this work,we investigate the steady-state photoluminescences(PLs)of CsPbI_(3)at the environmental temperature(Te)ranging from 20 K to 300 K,and observed anomalous behaviors at cryogenic temperatures:The carrier temperature(Tc)of pure CsPbI_(3)exhibits a negative correlation with Te,accompanied by an expansion in Urbach tails of absorption spectra(Abs.)and excessive red-shifts at peak energy of PLs.These phenomena are also observed in those samples containing a certain amount of Cs_(4)PbI_(6),but to a lesser extent and occurs at lower temperatures.It is attributed to the intensified hot phonon bottleneck effect(HPB)in CsPbI_(3)at cryogenic Te,which hinders the energy transfer from hot carriers,via longitudinal optics(LO)phonons to longitudinal acoustic(LA)phonons,to the ambient.For samples under continuous-wave laser excitation,in specific,the barrier induced by the enhanced HPB at low Teprevents the effective thermalization among carriers,LO and LA phonons,which,therefore,form thermally isolated ensembles with different temperatures.At cryogenic Terange,the elevated temperatures of carrier and LO phonon expand the high-energy side of PLs and the low-energy tail of Abs.,respectively.For those samples in which the CsPbI_(3)is mixed with Cs_(4)PbI_(6),the interfacial LO-LO interaction across them provides a bypass for heat dissipation,mitigating the heat accumulation in LO-phonons of CsPbI_(3).The results suggest that a strong HPB effect may break the thermal equilibrium among different branches of phonons in the lattice under certain extreme conditions.展开更多
基金supported by the CREST program of Japan Science and Technology Agency(JST)supported by KAKENHI from the Japan Society for the Promotion of Science(JSPS)under the Grant-in-Aid for Young Scientists B(Grant Number JP16K17947)
文摘Lead halide perovskites have some unique properties which are very promising for optoelectronic applications such as solar cells. LEDs and lasers. One important and expected application of perovskite halide semiconductors is solar cell operation including hot carriers. This advanced solar cell concept allows overcoming the Shockley-Queisser efficiency limit, thereby achieving energy conversion efficiency as high as 66% by extracting hot carriers. Understanding ultrafast photoexcited carrier dynamics and extraction in lead halide perovskites is crucial for these applications. Here, we clarify the hot carrier cooling and transfer dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy and Al2O3, poly(3-hexylthiophene-2,5-diyl) (P3HT) and TiO2 as selective contacts. We find that slow hot carrier cooling occurs on a timescale longer than 10 ps in the cases of CsPbI3/AI203 and CsPbI3/TiO2, which is attributed to hot phonon bottleneck for the high photoexcited carrier density. An efficient ultrafast hole transfer from CsPbI3 to the P3HT hole extracting layer is observed. These results suggest that hot holes can be extracted by appropriate selective contacts before energy dissipation into the halide perovskite lattice and that CsPbl3 has a potential for hot carrier solar cell applications.
基金supported by the National Natural Science Foundation of China(Nos.62374142,12175189 and 11904302)External Cooperation Program of Fujian(No.2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(Nos.20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)。
文摘The kinetic of low-temperature carrier and lattice of lead-halide perovskite is yet to be fully understood.In this work,we investigate the steady-state photoluminescences(PLs)of CsPbI_(3)at the environmental temperature(Te)ranging from 20 K to 300 K,and observed anomalous behaviors at cryogenic temperatures:The carrier temperature(Tc)of pure CsPbI_(3)exhibits a negative correlation with Te,accompanied by an expansion in Urbach tails of absorption spectra(Abs.)and excessive red-shifts at peak energy of PLs.These phenomena are also observed in those samples containing a certain amount of Cs_(4)PbI_(6),but to a lesser extent and occurs at lower temperatures.It is attributed to the intensified hot phonon bottleneck effect(HPB)in CsPbI_(3)at cryogenic Te,which hinders the energy transfer from hot carriers,via longitudinal optics(LO)phonons to longitudinal acoustic(LA)phonons,to the ambient.For samples under continuous-wave laser excitation,in specific,the barrier induced by the enhanced HPB at low Teprevents the effective thermalization among carriers,LO and LA phonons,which,therefore,form thermally isolated ensembles with different temperatures.At cryogenic Terange,the elevated temperatures of carrier and LO phonon expand the high-energy side of PLs and the low-energy tail of Abs.,respectively.For those samples in which the CsPbI_(3)is mixed with Cs_(4)PbI_(6),the interfacial LO-LO interaction across them provides a bypass for heat dissipation,mitigating the heat accumulation in LO-phonons of CsPbI_(3).The results suggest that a strong HPB effect may break the thermal equilibrium among different branches of phonons in the lattice under certain extreme conditions.