In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod...In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.展开更多
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature...Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.展开更多
A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-10...A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
We propose a general approach based on the gradient descent method to study the inverse problem,making it possible to reversely engineer the microscopic configurations of materials that exhibit desired macroscopic pro...We propose a general approach based on the gradient descent method to study the inverse problem,making it possible to reversely engineer the microscopic configurations of materials that exhibit desired macroscopic properties.Particularly,we demonstrate its application by identifying the microscopic configurations within any given frequency range to achieve transparent phonon transport through one-dimensional harmonic lattices.Furthermore,we obtain the phonon transmission in terms of normal modes and find that the key to achieving phonon transparency or phonon blocking state lies in the ratio of the mode amplitudes at ends.展开更多
Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtai...Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer.展开更多
This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical...This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.展开更多
The size-dependent band structure of an Si phononic crystal(PnC)slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT).The three-dimensional(3D)non-cl...The size-dependent band structure of an Si phononic crystal(PnC)slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT).The three-dimensional(3D)non-classic wave equations for the anisotropic material are derived according to the differential form of the NSGT.Based on the the general form of partial differential equation modules in COMSOL,a method is proposed to solve the non-classic wave equations.The bands of the in-plane modes and mixed modes are identified.The in-plane size effect and thickness effect on the band structure of the PnC slab are compared.It is found that the thickness effect only acts on the mixed modes.The relative width of the band gap is widened by the thickness effect.The effects of the geometric parameters on the thickness effect of the mixed modes are further studied,and a defect is introduced to the PnC supercell to reveal the influence of the size effects with stiffness-softening and stiffness-hardening on the defect modes.This study paves the way for studying and designing PnC slabs at nano-scale.展开更多
Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean...Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots.展开更多
Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is estab...Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.展开更多
The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric...The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials.展开更多
The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in re...The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.展开更多
Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coatin...Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials.In this paper,we present a first-principles calculations of the phonon transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers.Both materials possess low lattice thermal conductivity,at least two orders of magnitude lower than graphene and h-BN.The room temperature thermal conductivity of Pb_(2)SbAs(0.91 W/m K)is only a quarter of that of Pb_(2)PAs(3.88 W/m K).We analyze in depth the bonding,lattice dynamics,and phonon mode level information of these materials.Ultimately,it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures.Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb_(2)PAs and Pb_(2)SbAs,and the three-phonon scattering is sufficient to describe their anharmonicity.In this study,the thermal transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers are illuminated based on fundamental physical mechanisms,and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics.展开更多
Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf...The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.展开更多
By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.The...By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.The influences of a few factors such as the component materials, the filling fraction of scatterers and the ratio (RHL) of the scatterer's height to its length on the band-gaps of phononic crystals were investigated.It is found that in the three-dimension solid phononic crystals with FCC structure, the optimum case to obtain band-gaps is to embed high-velocity and high-density scatterers in a low-velocity and low-density host. The maximum value of band-gap can be obtained when the filling fraction is in the middle value. It is also found that the symmetry of the scatterers strongly influences the band-gaps. For RHL>1, the width of the band-gap decreases as RHL increases. On the contrary, the width of the band-gap increases with the increase of RHL when RHL is smaller than 1.展开更多
Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band ...Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.展开更多
The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propag...The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.展开更多
Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique...Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62204112,12174240,and 11874253)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220774).
文摘In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211400)the State Key Program of the National Natural Science of China(Grant No.11834008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12174192,12174188,and 11974176)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202410)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701).
文摘Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.
文摘A new method based on phononic crystals is presented to detect the concentration of heavy water(D_(2)O)in an H_(2)O-D_(2)O mixture.Results have been obtained and analyzed in the concentration range of 0%-10%and 90%-100%D_(2)O.A proposed structure of tungsten scatterers in an aluminum host is studied.In order to detect the target material,a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D_(2)O is embedded.By changing the concentration of D_(2)O in the H_(2)O-D_(2)O mixture,the resonance frequency undergoes a frequency shift.Each 1%change in D_(2)O concentration in the H_(2)O-D_(2)O mixture causes a frequency change of about 120 Hz.The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor.The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075,which are acceptable values for sensing purposes.The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金supported by the National Natural Science Foundation of China(Grant No.12075199)the Natural Science Foundation of Fujian Province(Grant No.2021J01006)Jiangxi Province(Grant No.20212BAB201024)。
文摘We propose a general approach based on the gradient descent method to study the inverse problem,making it possible to reversely engineer the microscopic configurations of materials that exhibit desired macroscopic properties.Particularly,we demonstrate its application by identifying the microscopic configurations within any given frequency range to achieve transparent phonon transport through one-dimensional harmonic lattices.Furthermore,we obtain the phonon transmission in terms of normal modes and find that the key to achieving phonon transparency or phonon blocking state lies in the ratio of the mode amplitudes at ends.
基金J.Z.acknowledges National Natural Science Foundation of China(12074371)CAS Interdisciplinary Innovation Team,Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030329001).
文摘Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer.
基金supported by the Basic Science Research Program through the National Research Foundation of Koreafunded by the Ministry of Education(No.2022R1I1A1A0105640611)。
文摘This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.
基金Project supported by the National Natural Science Foundation of China(No.11872186)the Fundamental Research Funds for the Central Universities of China(No.HUST:2016JCTD114)。
文摘The size-dependent band structure of an Si phononic crystal(PnC)slab with an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain gradient theory(NSGT).The three-dimensional(3D)non-classic wave equations for the anisotropic material are derived according to the differential form of the NSGT.Based on the the general form of partial differential equation modules in COMSOL,a method is proposed to solve the non-classic wave equations.The bands of the in-plane modes and mixed modes are identified.The in-plane size effect and thickness effect on the band structure of the PnC slab are compared.It is found that the thickness effect only acts on the mixed modes.The relative width of the band gap is widened by the thickness effect.The effects of the geometric parameters on the thickness effect of the mixed modes are further studied,and a defect is introduced to the PnC supercell to reveal the influence of the size effects with stiffness-softening and stiffness-hardening on the defect modes.This study paves the way for studying and designing PnC slabs at nano-scale.
基金supported by the National Natural Science Foundation of China Grant Nos. 52276072 and 51976096。
文摘Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots.
基金the National Natural Science Foundation of China(Nos.12272172 and 11847009)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB580005)+1 种基金the Youth Talent Promotion Project from China Association for Science and Technology(No.2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.
基金Project supported by the National Natural Science Foundation of China (Grant No.52076080)the Natural Science Foundation of Hebei Province of China (Grant No.E2020502011)。
文摘The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501503)the National Natural Science Foundation of China(Grant No.51474202)+2 种基金Network and Information Foundation of CAS(Grant No.CAS-WX2021SF-0102)the Key Project of Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-2-5)J.X.Li also acknowledges the funding from China Postdoctoral Science Foundation(Grant Nos.2022T150660 and 2021M700152).
文摘The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.
基金Project supported by the Youth Science and Technology Talent Project of Hunan Province of China (Grant No.2022RC1197)the National Natural Science Foundation of China (Grant No.52372260)。
文摘Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials.In this paper,we present a first-principles calculations of the phonon transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers.Both materials possess low lattice thermal conductivity,at least two orders of magnitude lower than graphene and h-BN.The room temperature thermal conductivity of Pb_(2)SbAs(0.91 W/m K)is only a quarter of that of Pb_(2)PAs(3.88 W/m K).We analyze in depth the bonding,lattice dynamics,and phonon mode level information of these materials.Ultimately,it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures.Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb_(2)PAs and Pb_(2)SbAs,and the three-phonon scattering is sufficient to describe their anharmonicity.In this study,the thermal transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers are illuminated based on fundamental physical mechanisms,and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics.
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
基金funded in parts by the National Natural Science Foundation of China (Grant No.12105242)Yunnan Fundamental Research Project (Grant Nos.202201AT070161 and 202301AW070006)support from the Graduate Scientific Research and Innovation Fund of Yunnan University (Grant No.KC-22221060)。
文摘The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
基金This work was supported by the Natural Science Foundation of Hu'nan Province (Grant No. 00JJY2072) the Foundation of Educational Committee of Hu'nan Province (Grant No. 01B019).
文摘By using the plane-wave-expansion method, the band structure of three-dimension phononic crystals was calculated, in which the cuboid scatterers were arranged in a host with a face-centered-cubic (FCC) structure.The influences of a few factors such as the component materials, the filling fraction of scatterers and the ratio (RHL) of the scatterer's height to its length on the band-gaps of phononic crystals were investigated.It is found that in the three-dimension solid phononic crystals with FCC structure, the optimum case to obtain band-gaps is to embed high-velocity and high-density scatterers in a low-velocity and low-density host. The maximum value of band-gap can be obtained when the filling fraction is in the middle value. It is also found that the symmetry of the scatterers strongly influences the band-gaps. For RHL>1, the width of the band-gap decreases as RHL increases. On the contrary, the width of the band-gap increases with the increase of RHL when RHL is smaller than 1.
基金Project supported by the National Natural Science Foundation of China (Grant No 50575222) and the State Key Development Program for Basic Research of China (Grant No 51307).
文摘Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.
基金supported by the National Natural Science Foundation of China(No.10632020).
文摘The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phononic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.
基金the National Natural Science Foundation of China(No.10632020)the German Research Foundation(No.ZH 15/11-1)jointly by the China Scholarship Council and the German Academic Exchange Service(No.D/08/01795).
文摘Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time.