期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-temperature corrosion of phosphate completion fluid and corrosion inhibition method by membrane transformation
1
作者 JIA Hu HE Wei NIU Chengcheng 《Petroleum Exploration and Development》 SCIE 2023年第6期1497-1508,共12页
By analyzing the corrosion of phosphate completion fluid on the P110 steel at 170 °C, the high-temperature corrosion mechanism of phosphate completion fluid was revealed, and a corrosion inhibition method by memb... By analyzing the corrosion of phosphate completion fluid on the P110 steel at 170 °C, the high-temperature corrosion mechanism of phosphate completion fluid was revealed, and a corrosion inhibition method by membrane transformation was proposed and an efficient membrane-forming agent was selected. Scanning electron microscope (SEM) images, X-ray energy spectrum and X-ray diffraction results were used to characterize the microscopic morphology, elemental composition and phase composition of the precipitation membrane on the surface of the test piece. The effect and mechanism of corrosion inhibition by membrane transformation were clarified. The phosphate completion fluid eroded the test piece by high-temperature water vapor and its hydrolyzed products to form a membrane of iron phosphate corrosion product. By changing the corrosion reaction path, the Zn2+ membrane-forming agent could generate KZnPO4 precipitation membrane with high temperature resistance, uniform thickness and tight crystal packing on the surface of the test piece, which could inhibit the corrosion of the test piece, with efficiency up to 69.63%. The Cu2+ membrane-forming agent electrochemically reacted with Fe to precipitate trace elemental Cu on the surface of the test piece, thus forming a protective membrane, which could inhibit metal corrosion, with efficiency up to 96.64%, but the wear resistance was poor. After combining 0.05% Cu2+ and 0.25% Zn2+, a composite protective membrane of KZnPO4 crystal and elemental Cu was formed on the surface of the test piece. The corrosion inhibition efficiency reached 93.03%, which ensured the high corrosion inhibition efficiency and generated a precipitation membrane resistant to temperature and wear. 展开更多
关键词 phosphate completion fluid corrosion mechanism membrane transformation corrosion inhibition mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部