The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelv...The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions.展开更多
基金support by the National Natural Science Foundation of China(No.51961026).
文摘The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions.