期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Composition and Performance of the Composite Coatings Obtained by Phosphating and Cerium Nitrate Post-Sealing on Galvanized Steel 被引量:4
1
作者 林碧兰 卢锦堂 +1 位作者 孔纲 刘军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期461-464,共4页
To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings ... To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and neutral salt spray (NSS) tests. The results show that after post-sealing the phosphated HDG samples with cerium nitrate solution, the pores among the zinc phosphate crystals are sealed by the compounds containing phosphorus, oxygen and cerium; the zinc phosphate crystals are covered by the flocculent cerium compounds; and the continuous composite coatings are formed on HDG steel. The corrosion resistance of the composite coatings, which increases with the increase in phosphating time and cerium nitrate post-sealing time, is far higher than that of the single phosphate coatings. The composite coatings with the optimal corrosion resistance are obtained for phosphating 300 s and post-sealing 300 s; and the corrosion resistance is more outstanding than that of the chromate coatings. 展开更多
关键词 galvanized steel phosphate coatings rare earths corrosion
下载PDF
Self-healing Performance of Composite Coatings Prepared by Phosphating and Cerium Nitrate Post-sealing 被引量:3
2
作者 林碧兰 LU Jintang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期813-817,共5页
The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositi... The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositions of the scratches were investigated using SEM and EDS. The phases of the corrosion products were examined through XRD. The self-healing mechanism of the composite coatings was discussed. The experimental results show that the composite coatings have an excellent corrosion resistance. The corrosion products increase with corrosion time and finally cover the whole scratch. They contain phosphorous, cerium, oxygen, chloride and zinc, and are fine needle and exceedingly compact. The composite coatings are favorable self-healing. During corrosion, the self-healing ions such as Ce3+, Ce4+, PO43-, Zn2+ in the composite coatings were dissolved, migrated, recombined, and covered the exposed zinc, impeding zinc corrosion. The self-healing process of the scratches on the composite coatings can be divided into three stages, about 2 h, 4 h, and 24 h, respectively. 展开更多
关键词 zinc phosphate coating SELF-HEALING corrosion resistance cerium nitrate
下载PDF
Zinc phosphating of 6061-Al alloy using REN as additive 被引量:5
3
作者 张圣麟 张晓麟 张明明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期110-114,共5页
Zinc phosphate coating formed on 6061-A1 alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating ... Zinc phosphate coating formed on 6061-A1 alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating solutions containing different concentrations of Rare Earth Nitrate (REN). REN, which acted as an accelerator in the phosphating solution, could catalyze the surface reaction and accelerate the phosphating process. REN mainly enabled the P in the phosphate coating to exist in the form of PO4^3- and promoted the hydrolysis of phosphatic acid in a liquid layer at the cathodes. This resulted in the evolution of H2 at the cathodes, which increased the local pH value and in turn drove the precipitation of the phosphate coating. Additionally, REN was adsorbed on the surface of the aluminum substrates to form a gel during the phosphating process. These gel particles were good crystal seeds, which helped to form phosphate crystal nuclei and possess the function of a nucleation agent that could decrease the phosphate crystal size. The corrosion resistance of the formed zinc phosphate coatings was improved. 展开更多
关键词 Rare Earth Nitrate (REN) phosphate coating aluminum alloy ACCELERATOR nucleation agent
下载PDF
Study on phosphating treatment of aluminum alloy:role of yttrium oxide 被引量:2
4
作者 张圣麟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期469-473,共5页
Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (... Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s. 展开更多
关键词 yttrium oxide zinc phosphate coating aluminum alloy nucleation agent ACCELERATOR rare earths
下载PDF
Review on the phosphate-based conversion coatings of magnesium and its alloys 被引量:2
5
作者 Debasis Saran Atul Kumar +2 位作者 Sivaiah Bathula David Klaumünzer Kisor K Sahu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1435-1452,共18页
Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge ... Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated. 展开更多
关键词 phosphate conversion coatings magnesium alloys CORROSION zinc phosphate conversion coatings calcium phosphate conversion coatings magnesium phosphate conversion coatings
下载PDF
Calcium phosphate conversion technique:A versatile route to develop corrosion resistant hydroxyapatite coating over Mg/Mg alloys based implants 被引量:2
6
作者 G.S.Hikku C.Arthi +2 位作者 R.B.Jeen Robert K.Jeyasubramanian R.Murugesan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1821-1845,共25页
Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period... Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications. 展开更多
关键词 Biodegradable implants MAGNESIUM Controlled corrosion ALLOYING HYDROXYAPATITE Calcium phosphate conversion coating
下载PDF
Surface Coating of NiTi Shape Memory Alloys with Calcium Phosphates by Dip-coating or Plasma-spraying-biological Characterization Examined by in vitro Testing Methods 被引量:1
7
作者 Esenwein Stefan A Bogdanski Denise +3 位作者 Prymak Oleg Epple Matthias Muhr Gert Kller Manfred 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期7-9,共3页
The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosph... The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosphates ( hydroxyapatite ) by high-temperature plasma-spraying or by dip-coating. The biocompatibility was tested in vitro by cultivation of isolated human granulocytes and whole blood cells. As substrates, pure NiTi, plasma-spray-coated NiTi and dip-coated NiTi were used. Isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. Compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased ( p 〈 0.01 ). Whether the d/f- ferences in apoptosis of granulocytes on dip-coated vs plasma-sprayed coatings observed are due to differences in material surface morphologies has to be analyzed in further studies. Because of the cellular interactions with the coating layers, h is likely that the results obtained are not caused by the underlying NiTi but due to the coating itself. 展开更多
关键词 shape memory alloys nitinol biomaterials testing calcium phosphate coating BIOCOMPATIBILITY surface coating implant testing
下载PDF
Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoride-magnesium phosphate duplex coatings 被引量:1
8
作者 Mohan Sathyaraj P Ravichandran K Sankara Narayanan TSN 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期314-331,共18页
The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good ... The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good bioactivity, promotes cell viability and cyto-compatibility and exhibits antibacterial activity. However, rapid dissolution in Mg in acidic magnesium phosphate containing solutions leads to the development of an inhomogeneous coating. The present study attempts to prevent the excessive dissolution of Mg by forming a fluoride conversion coating as a pre-treatment in the first stage followed by deposition of magnesium phosphate coating in the second stage to develop magnesium fluoride-magnesium phosphate duplex coatings. The morphological features, structural characteristics, nature of functional groups, corrosion behavior in Hanks’ balanced salt solution and bioactivity in simulated body fluid are assessed to ascertain the suitability of the magnesium fluoride-magnesium phosphate duplex coating in controlling the rate of degradation of Mg and improving its bioactivity using uncoated Mg and fluoride conversion coated Mg as reference. The findings of the study reveal that the magnesium fluoride-magnesium phosphate duplex coating could offer an excellent corrosion resistance and improve the bioactivity of Mg. 展开更多
关键词 Fluoride conversion coating Magnesium phosphate coating Duplex coating Corrosion resistance Bioactivity
下载PDF
New design principles for the bath towards chromate-and crack-free conversion coatings on magnesium alloys 被引量:1
9
作者 Shangju Liao Baoxing Yu +6 位作者 Xuliang Zhang Xiaopeng Lu Peng Zhou Chunyan Zhang XiaoBo Chen Tao Zhang Fuhui Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期505-519,共15页
Cracking and low thickness are major obstacles to the high corrosion performance of conversion coating on magnesium alloy.In this work,the ratio of total acidity to p H(TA/p H)was applied as an indicator,and new princ... Cracking and low thickness are major obstacles to the high corrosion performance of conversion coating on magnesium alloy.In this work,the ratio of total acidity to p H(TA/p H)was applied as an indicator,and new principles regarding the design of conversion bath were proposed.The treatment bath should be composed of species that can be categorized into two groups:the first group of species that react with Mg substrate to increase the local p H at the interface;the second group that precipitate and contributes to the growth of coating.The species belong to second group exists in a supersaturated state and its precipitation process is almost independent on the reactions of the species in first group.By this way,a thick and crack-free two-layered conversion coating is obtained.Moreover,the nature of the adjustment of TA/p H and the roles of the oxidizing agent and catalyst were discussed. 展开更多
关键词 Phosphate conversion coating Design principles Magnesium alloy TA/pH Corrosion resistance
下载PDF
Comparison of the effects of pre-activators on morphology and corrosion resistance of phosphate conversion coating on magnesium alloy
10
作者 Tao Li Zhongjun Leng +4 位作者 Shifang Wang Xitao Wang Reza Ghomashchi Yuansheng Yang Jixue Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3485-3494,共10页
In this study, Mg–6.0Zn–3.0Sn–0.5Mn(ZTM630) magnesium alloy was pre-activated by colloidal Ti, oxalic acid, and phosphoric acid,and a phosphate conversion coating(PCC) was prepared on the alloy surface. The morphol... In this study, Mg–6.0Zn–3.0Sn–0.5Mn(ZTM630) magnesium alloy was pre-activated by colloidal Ti, oxalic acid, and phosphoric acid,and a phosphate conversion coating(PCC) was prepared on the alloy surface. The morphology and corrosion resistance of the prepared PCCs were investigated. Surface morphology studies showed that the phosphate crystals that formed the coating were the smallest for the sample pre-activated by phosphoric acid. The coating on the colloidal Ti and the phosphoric acid samples had the largest and the smallest thickness and surface roughness, respectively. The reason for the discrepancy was analyzed by comparing the surface morphologies of alloy samples immediately after the pre-activation treatment and various phosphating treatments. X-ray diffraction analysis revealed that all three PCCs contained the same compounds. The corrosion resistance time from the copper sulfate drop test and the electrochemical data from the potentiodynamic polarization curves showed that the coating pre-activated by phosphoric acid had the best corrosion resistance. Finally, the 1500 h neutral salt spray corrosion test confirmed that the phosphating treated magnesium alloy, which was pre-activated by phosphoric acid,exhibited excellent corrosion resistance and behavior. 展开更多
关键词 Phosphate conversion coating Surface pre-activator Magnesium alloy MORPHOLOGY Corrosion
下载PDF
Effect of rare earth on the coating-forming and mechanism of phosphatization 被引量:4
11
作者 邝钜炽 黄莺 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期132-135,共4页
It was ascertained that when a RE element was added in bath,the sample was improved on the anti-corrosion power of the coating because of the increasing of covering rate of formless crystal Zn2Fe(PO4) 2·4H2O(mark... It was ascertained that when a RE element was added in bath,the sample was improved on the anti-corrosion power of the coating because of the increasing of covering rate of formless crystal Zn2Fe(PO4) 2·4H2O(marked P) crystals and the ratio of P/(P+H) (H was the mark of Zn3(PO4) 2 crystal) in the coating,combination of which with components parsing by EDS indicated that the sequence of contribution elements P and Zn to erosion resistance of coatings was P】Zn. And the correlative mechanism was discussed,which made it clear that owing to the particularity of the outer-shell electron structure and larger ionic radius,RE was so easy to be polarized and metamorphosed itself that it adsorbed lightly on the basic body to pose gels. They efficiently reduced the activation energy which was required for formation of a new solid phase of phosphates and made it also possible to engender effectively active nucleation regions of cathode and anode under low temperature phosphating condition,which was propitious to formation,densification and uniformization of the phosphate crystal nucleus and growth of the crystallite and coating buildup. Thus it could be seen that REN played the role of surface regulator and accelerant,which speeded up the phosphating,as well as bids amount of porosity of the coating fall to improve the corrosion resistance of the coating. 展开更多
关键词 rare earths (RE) phosphate coating configuration analysis DEPOLARIZATION NUCLEATION
原文传递
Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on AZ31 magnesium alloy 被引量:4
12
作者 Lan-Yue Cui Guang-Bin Wei +3 位作者 Rong-Chang Zeng Shuo-Qi Li Yu-Hong Zou En-Hou Han 《Bioactive Materials》 SCIE 2018年第3期245-249,共5页
A SnO2-doped dicalcium phosphate coating was prepared on AZ31 alloy by means of hydrothermal deposition.The results showed that the coating possessed a globular morphology with a long lamellar crystalline structure an... A SnO2-doped dicalcium phosphate coating was prepared on AZ31 alloy by means of hydrothermal deposition.The results showed that the coating possessed a globular morphology with a long lamellar crystalline structure and a thickness of approximately 40 mm.The surface of the coating became smooth with an increase additive amount of the SnO2 nanoparticles.The corrosion current density and hydrogen evolution rate of the coating prepared in presence of SnO2 were reduced compared to the coating without SnO2 and the bare AZ31 substrate,indicating an improvement in the corrosion resistance of the SnO2-doped coating. 展开更多
关键词 Phosphate coating BIOMATERIALS Magnesium alloys Corrosion Stannic oxide
原文传递
Influence of Doping Ions on the Antibacterial Activity of Biomimetic Coating on CoCrMo Alloy 被引量:1
13
作者 Georgeta Totea Daniela Ionita Ioana Demetrescu 《Journal of Bionic Engineering》 SCIE EI CSCD 2015年第4期583-591,共9页
In this study biomimetic fluoridated phosphate doped hydrophilic coatings with various ions on CoCrMo alloy were pre- pared by electrodeposition. Cu and Zn ions were chosen for doping because of their well known antib... In this study biomimetic fluoridated phosphate doped hydrophilic coatings with various ions on CoCrMo alloy were pre- pared by electrodeposition. Cu and Zn ions were chosen for doping because of their well known antibacterial activity. The struc^xes of the coatings were identified using Fourier-transform Infrared (FTIR) analysis. X-ray Diffraction (XRD) analysis was performed to evaluate crystallite dimensions of the specimen surface. The contact angle was measured in order to establish the hydrophilic/hydrophobic balance and to compute surface energy. All studied samples have a hydrophilic character which is weaken after doping. The time evolution of ions releasing from the coatings was evaluated with an inductively plasma mass spectrometer after immersion in saline phosphate. The hemolytic experiments indicate that except the fluoridated coatings doped with Zn which is slightly hemolytic, all other samples are non hemolytic. The test for antibacterial activity for Staphy- lococcus aureus and Pseudomonas aeruginosa indicated that the fluoridated biomimetic coating doped with various positive ions increases bacterial growth inhibition level significantly. Fluoridated phosphate coating doped with Cu has best antibacterial activity 展开更多
关键词 phosphate coating ELECTRODEPOSITION CoCrMo alloy doping ions antibacterial activity
原文传递
Effect of Amino-,Methyl- and Epoxy-Silane Coupling as a Molecular Bridge for Formatting a Biomimetic Hydroxyapatite Coating on Titanium by Electrochemical Deposition 被引量:1
14
作者 Guoxin Tan Kongyou Ouyang +5 位作者 Hang Wang Lei Zhou Xiaolan Wang Yan Liu Lan Zhang Chengyun Ning 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期956-965,共10页
The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone ... The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications. 展开更多
关键词 Silane coupling Molecular bridge Calcium phosphate coatings Titanium Electrochemical deposition
原文传递
A moisture-resistant antireflective coating by sol-gel process for neodymium-doped phosphate laser glass 被引量:1
15
作者 刘瑞军 詹若愚 +1 位作者 唐永兴 朱健强 《Chinese Optics Letters》 SCIE EI CAS CSCD 2006年第2期119-121,共3页
Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractiv... Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractive index of this coating varied from 1.31 to 1.42. A porous antireflective (AR) silica coating with the index of 1.27 was coated on the moisture-resistant coating surface. The two-layer coating possessed transmission up to 99.1% at wavelength of 966 nm, surface root-mean-square (RMS) roughaess of 1.245 am, and roughness of average (RA) of 0.961 am. In the case of laser of 1053-nm laser waveleilgth and 1-ns pulse duration, the damage threshold of the two-layer coatings was more than 15 J/cm^2. 展开更多
关键词 A moisture-resistant antireflective coating by sol-gel process for neodymium-doped phosphate laser glass POLY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部