期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals 被引量:5
1
作者 Wendong Wang Cui Ma +3 位作者 Yinting Zhang Shengjiong Yang Yue Shao Xiaochang Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期191-199,共9页
Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a(NFS) made from drinking water treatment residuals... Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a(NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At p H 7.0, the maximum adsorption capacity of 1.03 mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31 mg/g at 35°C.Under both acidic conditions(part of the adsorption sites was consumed) and basic conditions(negative charges formed on the surface of NFS, which led to a static repulsion of PO43-and HPO42-), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25 mol/L Na OH. The activation energy was calculated to be above 8.0 k J/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process. 展开更多
关键词 Adsorption Drinking water treatment residuals Domestic wastewater Filter substrate Phosphate
原文传递
Local treatment of osteoporosis with alendronate-loaded calcium phosphate cement 被引量:5
2
作者 Zhao Jindong Tang Hai +1 位作者 Wang Jiayang Li Gang 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第22期3906-3914,共9页
Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".T... Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".The study was performed to investigate the effect of alendronate-loaded calcium phosphate cement (CPC) as a novel drug delivery system for local treatment of osteoorosis.Methods An in vitro study was performed using CPC fabricated with different concentrations of alendronate (ALE,0,2,5,10 weight percent (wt%)).The microstructure,setting time,infrared spectrum,biomechanics,drug release,and biocompatibility of the composite were measured in order to detect changes when mixing CPC with ALE.An in vivo study was also performed using 30 Sprague-Dawley rats randomly divided into six groups:normal,Sham (ovariectomized (OVX) + Sham),CPC with 2% ALE,5%ALE,and 10% ALE groups.At 4 months after the implantation of the composite,animals were sacrificed and the caudal vertebrae (levels 4-7) were harvested for micro-CT examination and biomechanical testing.Results The setting time and strength of CPC was significantly faster and greater than the other groups.The ALE release was sustained over 21 days,and the composite showed good biocompatibility.In micro-CT analysis,compared with the Sham group,there was a significant increase with regard to volumetric bone mineral density (BMD) and trabecular number (Tb.N) in the treated groups (P <0.05).Trabecular spacing (Tb.Sp) showed a significant increase in the Sham group compared to other groups (P <0.01).However,trabecular thickness (Tb.Th) showed no significant difference among the groups.In biomechanical testing,the maximum compression strength and stiffness of trabecular bone in the Sham group were lower than those in the experimental groups.Conclusions The ALE-loaded CPC displayed satisfactory properties in vitro,which can reverse the OVX rat vertebral trabecular bone microarchitecture and biomechanical properties in vivo. 展开更多
关键词 local treatment of osteoporosis alendronate-loaded calcium phosphate cement trabecular bone microarchitecture biomechanical properties micro-CT drug delivery system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部