期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Phosphoprotein phosphatase 1-interacting proteins as therapeutic targets in prostate cancer
1
作者 Juliana Felgueiras Margarida Fardilha 《World Journal of Pharmacology》 2014年第4期120-139,共20页
Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still... Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specifcity of prostate-specifc antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modifcation critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phos-phatase, whose specifcity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identifed as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer. 展开更多
关键词 Prostate cancer Reversible phosphorylation phosphoprotein phosphatase 1 phosphoprotein phosphatase 1-interacting proteins Protein complexes Therapeutic targets
下载PDF
Phosphoprotein Phosphatase 1 Isoforms Alpha and Gamma Respond Differently to Prodigiosin Treatment and Present Alternative Kinase Targets in Melanoma Cells
2
作者 Margarida Fardilha Joao Figueiredo +7 位作者 Margarita Espona-Fiedler Juliana Felgueiras Luis Korrodi-Gregorio Sara L.C.Esteves Sandra Rebelo Odete A.B.da Cruz Silva Edgar da Cruz e Silva Ricardo Perez-Tomas 《Journal of Biophysical Chemistry》 2014年第2期67-77,共11页
Reversible protein phosphorylation is a central regulatory mechanism of cell function. Deregulation of the balanced actions of protein kinases and phosphatases has been frequently associated with several pathological ... Reversible protein phosphorylation is a central regulatory mechanism of cell function. Deregulation of the balanced actions of protein kinases and phosphatases has been frequently associated with several pathological conditions, including cancer. Many studies have already addressed the role of protein kinases misregulation in cancer. However, much less is known about protein phosphatases influence. Phosphoprotein Phosphatase 1 (PPP1) is one of the major serine/threonine protein phosphatases who has three catalytic isoforms: PPP1CA, PPP1CB, and PPP1CC. Its function is achieved by binding to regulatory subunits, known as PPP1-interacting proteins (PIPs), which may prefer a catalytic isoform. Also, some inhibitors/enhancers may exhibit isoform specificity. Here we show that, prodigiosin (PG), a molecule with anticancer properties, promotes the formation of PPP1CA-AKT complex and not of PPP1CC-MAPK complex. Both, AKT and MAPK, are well-known PIPs from two pathways that crosstalk and regulate melanoma cells survival. In addition, the analysis performed using surface plasmon resonance (SPR) technology indicates that PPP1 interacts with obatoclax (OBX), a drug that belongs to the same family of PG. Overall, these results suggest that PG might, at least in part, act through PPP1C/PIPs. Also, this study is pioneer in demonstrating PPP1 isoform-specific modulation by small molecules. 展开更多
关键词 phosphoprotein phosphatase 1 Catalytic Subunit Surface Plasmon Resonance Mitogen-Activated Protein Kinase V-Akt Murine Thymoma Viral Oncogene Glycogen Synthase Kinase 3
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部