期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Current Progress and Challenges of Carbonized Polymer Dot-Based Room-Temperature Phosphorescent Materials
1
作者 Chengyu Zheng Songyuan Tao Bai Yang 《CCS Chemistry》 CSCD 2024年第3期604-622,共19页
Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between t... Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between their special structures and luminescent properties.In recent years,great progress has been made in the field of CPD-based room-temperature phosphorescent materials.This review pays particular attention to how the special“core–shell”structure of CPDs influences the activation of roomtemperature phosphorescence(RTP).The strategies and vital factors to activate RTP for CPD-based materials in both solid state and water were reviewed in detail to elaborate on the effect of the special structure on RTP generation.Furthermore,some perspectives on the current challenges were also provided to guide the further development of CPD-based room-temperature phosphorescent materials. 展开更多
关键词 room-temperature phosphorescent materials carbon dots carbonized polymer dots “core-shell”structure photoluminescent mechanism
原文传递
Characterization of Y_2O_2S∶Eu ^(3+), Mg^(2+), Ti^(4+) Long-Lasting Phosphor Synthesized by Flux Method 被引量:8
2
作者 王育华 王治龙 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第1期25-28,共4页
Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased w... Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eu^3+ (0.01 ≤ x ≤0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu^3 + crystal structure, Eu^3+ ions only replaced Y^3 + ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D1→^ 7F2 transition) to 626 nm (^5Do→^7TF2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eu^3+ (0.01 ≤x ≤0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg^2+ or Ti^4+. ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg^2 + and Ti^4 + ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd·m^-2). Thus the LLP mechanism was analyzed. 展开更多
关键词 Y2O2S: Eu^3 Mg^2 Ti^4 flux method long-lasting phosphorescence material rare earths
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部