A new kind of doped rare earth free phosphor Y 2O 2S∶xTi (0<x≤0.10) with doped Ti as activative center was synthesized by solid state reaction and sintered at 1200 ℃ for 2.5 h under reducing atmosphere. XRD pa...A new kind of doped rare earth free phosphor Y 2O 2S∶xTi (0<x≤0.10) with doped Ti as activative center was synthesized by solid state reaction and sintered at 1200 ℃ for 2.5 h under reducing atmosphere. XRD patterns, photoluminescence spectra, time-resolved phosphorescence spectra and decay curves of the phosphor were investigated. XRD results reveal that a single Y 2O 2S phase exists with Ti content up to 6% (mol fraction). Yellow long lasting phosphorescence for present materials was observed in the dark with naked eye after the removal of the excitation light. From the time-resolved phosphorescence spectra the broad emission band centered at 565 nm was confirmed to be responsible for the long lasting phosphorescence which could maintain above 1 h. The possible mechanism responsible for the long lasting phosphorescence of the Y 2O 2S∶Ti phosphor was proposed.展开更多
A ligand, N^1, N^4-di ( pyridin-2-yl ) succi- namide (L) and its lanthanide( IH ) complexes (RE = La, Eu, Tb, Gd, Yb ) were synthesized and characterized in detail. The results indicate that the composition of...A ligand, N^1, N^4-di ( pyridin-2-yl ) succi- namide (L) and its lanthanide( IH ) complexes (RE = La, Eu, Tb, Gd, Yb ) were synthesized and characterized in detail. The results indicate that the composition of the binary complexes is determined as [ REL (H2O)2(NO3)2] NO3, that the complexes are 1 : 1 electrolytes in DMF, and that the Tb^3+ complex has brightly green fluorescence in a solid state. At the same time, the energy levels of the excited triplet states for the six ligands were determined to be 22989 -1 cm . The fact that the ligand sensitize Tb^3+ complexes was explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and ^5Dj of Tb^3+ or Eu^3+ . When 2000 cm^-1 〈 △E(T-^5D4) 〈 3000 cm^-1, the luminescent intensity of the Tb^3+ complex is stronger. When 3000 cm^-1〈 △E (T-^5D1), the luminescent intensity of the Eu^3+ complex is weak- er or close to nil. This means that the triplet energy level of the ligand is a chief factor that dominates RE^3+ luminescence.展开更多
文摘A new kind of doped rare earth free phosphor Y 2O 2S∶xTi (0<x≤0.10) with doped Ti as activative center was synthesized by solid state reaction and sintered at 1200 ℃ for 2.5 h under reducing atmosphere. XRD patterns, photoluminescence spectra, time-resolved phosphorescence spectra and decay curves of the phosphor were investigated. XRD results reveal that a single Y 2O 2S phase exists with Ti content up to 6% (mol fraction). Yellow long lasting phosphorescence for present materials was observed in the dark with naked eye after the removal of the excitation light. From the time-resolved phosphorescence spectra the broad emission band centered at 565 nm was confirmed to be responsible for the long lasting phosphorescence which could maintain above 1 h. The possible mechanism responsible for the long lasting phosphorescence of the Y 2O 2S∶Ti phosphor was proposed.
文摘A ligand, N^1, N^4-di ( pyridin-2-yl ) succi- namide (L) and its lanthanide( IH ) complexes (RE = La, Eu, Tb, Gd, Yb ) were synthesized and characterized in detail. The results indicate that the composition of the binary complexes is determined as [ REL (H2O)2(NO3)2] NO3, that the complexes are 1 : 1 electrolytes in DMF, and that the Tb^3+ complex has brightly green fluorescence in a solid state. At the same time, the energy levels of the excited triplet states for the six ligands were determined to be 22989 -1 cm . The fact that the ligand sensitize Tb^3+ complexes was explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and ^5Dj of Tb^3+ or Eu^3+ . When 2000 cm^-1 〈 △E(T-^5D4) 〈 3000 cm^-1, the luminescent intensity of the Tb^3+ complex is stronger. When 3000 cm^-1〈 △E (T-^5D1), the luminescent intensity of the Eu^3+ complex is weak- er or close to nil. This means that the triplet energy level of the ligand is a chief factor that dominates RE^3+ luminescence.