Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sedime...Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.展开更多
In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to...In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to selectively remove and separate Fe, Mn oxides and organic materials (OMs) in the non-residual fraction from the SSs collected in Songhua River, China. After screening different kinds of conventional extractants of Fe and Mn oxides and OMs used for separation of heavy metals in the soils and sediments, NH2OH .HCl (0.1 mol/L) + HNO3 (0.1 mol/L), (NH4)2C2O4 (0.2 mol/L) + H2C2O4 (pH 3.0), and 30% of H2O2 were respectively applied to selectively extract Mn oxides, Fe/Mn oxides and OMs. After the extraction treatments, the target components were removed with extraction efficiencies between 86.09%--3.36% for the hydroxylamine hydrochloride treatment, 80.63%- 101.09% for the oxalate solution extraction, and 94.76%-102.83% for the hydrogen peroxide digestion, respectively. The results indicate that this selective extraction technology was effective for the extraction and separation ofFe, Mn oxides and OMs in the SSs, and important for further mechanism study of trace metal adsorption onto SSs.展开更多
The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological...The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P) accounted for 49.2% of the TP, biological phosphorus (BP) that includes Ex-P, Fe-P, OP, and a portion of Au-P, thus accounted for 34.3% to 83.5% of the TP in the Zhelin Bay, which was within the percentage range, but with a high absolute value among the estuaries. Au-P was the most important species of phosphorus and accounted for 49.2% of the TP during the investigation. Since eutrophication in the water column can lead to reduction of pH in sediment and release of phosphorus in Au-P combined with authigenic spodiosite and calcium carbonate, high content of Au-P in the sediment maybe act as a time bomb that can trigger a vicious cycle of eutrophication and large-scale harmful algal bloom in the Zhelin Bay.展开更多
For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average...For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average, 527×10-6, 455×10~6 and 72×10-6 were found for TP,IP and OP for the surface sediments taken in the two cruises. The distribution of OP and IP was controlled by the sample particle size: OP content increased with the decreasing of the sample particle size, while the maximal value of IP was found in the silt fraction due to the existence of apatite in our samples. Vertical distributions reflected well the channel change of the Huanghe River. Results from the multiple regressions between the three forms of phosphorus and the percentages of different particle size agreed well with the analytical data.展开更多
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau...Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.展开更多
Soil erosion associated with land cultivation exerts a great impact on ecological environment.Such an impact is specific of land,crop,tillage,management and so on.This study aimed to investigate the effects of crop cu...Soil erosion associated with land cultivation exerts a great impact on ecological environment.Such an impact is specific of land,crop,tillage,management and so on.This study aimed to investigate the effects of crop cultivation on water quality by comparing nutrient distribution in the sediment at Southern China.Two sedimentation sites adjacent to the uncultivated(S1)and cultivated upland(S2)were selected and samples were analyzed.Results showed that soil pH decreased with the increasing depth above 20 cm and then kept relatively stable of the both sediments.Soil organic matter,nitrogen and phosphorus contents decreased with the increasing depth.There was no significant difference between two sediments in organic matter and nitrogen contents,but the total phosphorus and extractable phosphorus contents in S2 were much higher than that in S1.The data indicated that soil eroded from S2 could possess much high potential to deteriorate water quality.Nutrient sedimentation can reflect the history of soil erosion and provide useful information for sustainable soil management and water conservation through improving cultivation and tillage measures.展开更多
In this study,sediment organic phosphorus(OP)and organic carbon(OC)in Lake Taihu,China,as well as their relationships,were analyzed during the outbreak and decline of algal blooms(ABs)over a five-month field study.The...In this study,sediment organic phosphorus(OP)and organic carbon(OC)in Lake Taihu,China,as well as their relationships,were analyzed during the outbreak and decline of algal blooms(ABs)over a five-month field study.The results showed synchronous temporal changes in the sediment OP and OC contents with the development of ABs.In addition,there was a significant positive correlation between the sediment OP and OC(p<0.01),suggesting simultaneous deposition and consumption during the ABs outbreak.The sediment OP and OC contents decreased significantly at the early and last stages of the ABs outbreak and increased at the peak of the ABs outbreak and during the ABs decline.These temporal variation patterns suggest that the sediment OC and OP contents did not consistently increase during the ABs outbreak,even though algae are an important source of organic matter in sediments.The depletion or enrichment of OC and OP in sediments may also depend on the scale of the ABs outbreak.The obtained results revealed significant differences in the sediment OC and OP contents between the months(p<0.05).In addition,OP in the sediments was dominated by orthophosphate diester(phospholipids and DNA-P)and orthophosphate monoester during the ABs outbreak and decline,respectively.The active OC contents and proportions in the sediments in the ABs outbreak were significantly lower than those observed in the ABs decline period,demonstrating the significant impacts of the ABs outbreak and decline on the sediment OC and OP in Lake Taihu.展开更多
To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selec...To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the components. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, before and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar basis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in controlling the environmental behavior of AT in an aquatic environment.展开更多
For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equil...For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equilibrium-partitioning- based numerical SQGs have been developed or are currently available because of the confounding factors mediating the bioavailability of metals. A study was conducted at Dianchi Lake, which is a heavily eutrophicated lake on the Yunnan- Guizhou Plateau, China with the focus on the measurement of partitioning coefficient (Kp) and SQGs derivation and normalization to acid volatile sulfide (AVS), fine material, and organic carbon. Using new normalization methods, SQGs were formulated for seven metals including copper, zinc, lead, cadmium, chromium, mercury, and arsenic in Dianchi Lake. In Dianchi Lake sediments, the fine material contributed 25.4%-36.0% to the SQG values, with the largest contribution to the SQG value of mercury; AVS contributed 2.9%-75.0% to the SQG values, with the largest contribution to the SQG value of cadmium. This indicated that the fine material and the AVS were the most important controlling factors to the bioavailability of mercury and caximium, respectively. The contribution of total organic carbon (TOC) to the SQG values of copper and leaxi was 3.8% and 7.1%, respectively, indicating that at relatively lower concentrations, the contribution of TOC was not significant. In addition to normalization methods, appropriate procedures for the application of EqPA including sample collection, storage, and analysis are also essential to improve the reliability of SQGs. The normalized Dianchi Lake SQGs were higher than most of the empirically based SQGs developed in North America, but lower than Hong Kong interim SQGs except for cadmium and arsenic. The differences could be attributed to the approaches used for derivation of SQGs and the water quality criteria adopted and the differences in the physical and chemical characteristics of the sediments.展开更多
Organic phosphorus (nonreactive E NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sed...Organic phosphorus (nonreactive E NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Talhu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRPnA), fulvic acid-associated NRP (NaOH-NRPFA) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCOa-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.展开更多
The understanding of organic phosphorus(P) dynamics in sediments requires information on their species at the molecular level,but such information in sediment profiles is scarce.A sediment profile was selected from ...The understanding of organic phosphorus(P) dynamics in sediments requires information on their species at the molecular level,but such information in sediment profiles is scarce.A sediment profile was selected from a large eutrophic lake,Lake Taihu(China),and organic P species in the sediments were detected using solution phosphorus-31 nuclear magnetic resonance spectroscopy(31 P NMR) following extraction of the sediments with a mixture of 0.25 mol/L NaOH and 50 mmol/L EDTA(NaOH-EDTA) solution.The results showed that P in the NaOH-EDTA extracts was mainly composed of orthophosphate,orthophosphate monoesters,phospholipids,DNA,and pyrophosphate.Concentrations of the major organic P compound groups and pyrophosphate showed a decreasing trend with the increase of depth.Their half-life times varied from 3 to 27 years,following the order of orthophosphate monoesters 〉 phospholipids DNA 〉 pyrophosphate.Principal component analysis revealed that the detected organic P species had binding phases similar to those of humic acid-associated organic P(NaOH-NRP HA),a labile organic P pool that tends to transform to recalcitrant organic P pools as the early diagenetic processes proceed.This demonstrated that the depth attenuation of the organic P species could be partly attributed to their increasing immobilization by the sediment solids,while their degradation rates should be significantly lower than what were suggested in previous studies.展开更多
The chemistry of sedimentary organic phosphorus(OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with enviro...The chemistry of sedimentary organic phosphorus(OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with environmental conditions was analyzed on the basis of OP spatial and historical distributions in lake sediments. The redundancy analysis and OP spatial distribution results suggested that both Na OH-OP(OP extracted by Na OH) and Re-OP(residual OP) in surface sediments from the selected 13 lakes reflected the gradient effects of environmental conditions and the autochthonous and/or allochthonous inputs driven by latitude zonality in China. The lake level and salinity of Lake Hulun and the runoff and precipitation of its drainage basin were reconstructed on the basis of the geochemistry index. This work showed that a gradient in weather conditions presented by the latitude zonality in China impacts the OP accumulation through multiple drivers and in many ways.The drivers are mainly precipitation and temperature, governing organic matter(OM)production, degradation rate and transportation in the watershed. Over a long temporal dimension(4000 years), the vertical distributions of Re-OP and Na OH-OP based on a dated sediment profile from HLH were largely regulated by the autochthonous and/or allochthonous inputs, which depended on the environmental and climate conditions and anthropogenic activities in the drainage basin. This work provides useful environmental geochemistry information to understand the inherent linkage of OP fractionation with environmental conditions and lake evolution.展开更多
The effects of sediment aluminum(Al),organic carbon(OC),and dissolved oxygen(DO)on phosphorus(P)transformation,at the water-sediment interface of a eutrophic constructed lake,were investigated via a series of simulati...The effects of sediment aluminum(Al),organic carbon(OC),and dissolved oxygen(DO)on phosphorus(P)transformation,at the water-sediment interface of a eutrophic constructed lake,were investigated via a series of simulative experiments.The above three factors had various influences on dissolved P concentration,water pH,water and surface sediment appearance,and P fractions.Additions of Al had the greatest effect on suppressing P release,and the water p H remained alkaline in the water-sediment system under various OC and DO conditions.No dissolution of the added Al was detected.31P-N M R characterization suggested that OC addition did not promote biological P uptake to polyphosphates under oxic conditions.The simulation result on the added phytate indicated the absence of phytate in the original lake sediment.As compared to the reported natural lakes and wetland,the water-sediment system of the constructed lake responded differently to some simulative conditions.Since Al,OC,and DO can be controlled with engineering methods,the results of this study provide insights for the practical site restorations.展开更多
The concentration of total nitrogen (TN), total phosphorus (TP) and organic material (OM) at sixty grid division in Lake Chaohu basin around the lake was studied, in order to investigate their spatial distribution cha...The concentration of total nitrogen (TN), total phosphorus (TP) and organic material (OM) at sixty grid division in Lake Chaohu basin around the lake was studied, in order to investigate their spatial distribution characteristics. The results showed that the average concentrations of TN, TP and OM were 1027 mg/kg, 483 mg/kg, 1.95%, and their concentrations ranged from 253 mg/kg to 2273 mg/kg, 223 mg/kg to 1173 mg/kg and 0.291% to 5.48%, respectively. The high concentration areas were located at the basins of Tuogao river and Zhao river while the low concentration areas were located at basins of Pai river, Nanfei river and Dianpu river. The concentrations of TN and OM were higher in East part than in West part. The spatial distribution of TN, TP and OM concentrations of the surface soil showed inconsistent with those of the water quality of the inflow rivers and the lake and the TN and TP of lake sediment studied.展开更多
We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ...We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ( 60%). The fraction of clay was 3%. Total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 729 to 1922 mg/kg and from 692 to 1388 mg/kg, respectively. Nutrient concentrations within the sediments usually decreased with increasing depth. The TN and TP concentrations within the fine sand were higher than for that within silt. Sediment phosphorus fractions were between 2.99% and 3.37% Ex-P (exchangeable phosphorus), 7.89% and 13.71% Fe/Al-P (Fe, Al oxides bound phosphorus), 61.32% and 70.14% Ca-P (calcium-bound phosphorus), and 17.03% and 22.04% Org-P (organic phosphorus). Nitrogen and phosphorus release from sediment could lead to the presence of 21.02 mg N/L and 3.10 mg P/L within the water column. A river restoration project should address the sediment nutrient stock.展开更多
基金the China’s National Basic Research Program:"Studies on the Process of Eutrophication of Lakesand the Mechanism of the Blooming of Blue Green Alga" (No2002CB412304)
文摘Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.
基金The National Basic Research Program (973) of China (No. 2004CB3418501)
文摘In order to investigate the adsorption mechanism of trace metals to surficial sediments (SSs), a selective extraction procedure was improved in the present work. The selective extraction procedure has been proved to selectively remove and separate Fe, Mn oxides and organic materials (OMs) in the non-residual fraction from the SSs collected in Songhua River, China. After screening different kinds of conventional extractants of Fe and Mn oxides and OMs used for separation of heavy metals in the soils and sediments, NH2OH .HCl (0.1 mol/L) + HNO3 (0.1 mol/L), (NH4)2C2O4 (0.2 mol/L) + H2C2O4 (pH 3.0), and 30% of H2O2 were respectively applied to selectively extract Mn oxides, Fe/Mn oxides and OMs. After the extraction treatments, the target components were removed with extraction efficiencies between 86.09%--3.36% for the hydroxylamine hydrochloride treatment, 80.63%- 101.09% for the oxalate solution extraction, and 94.76%-102.83% for the hydrogen peroxide digestion, respectively. The results indicate that this selective extraction technology was effective for the extraction and separation ofFe, Mn oxides and OMs in the SSs, and important for further mechanism study of trace metal adsorption onto SSs.
基金The Major Projects of Wenzhou Medical College under contract No XNK06008the Major Marine Technology Projects of Guangdong Province under contract No A200005F02
文摘The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P) accounted for 49.2% of the TP, biological phosphorus (BP) that includes Ex-P, Fe-P, OP, and a portion of Au-P, thus accounted for 34.3% to 83.5% of the TP in the Zhelin Bay, which was within the percentage range, but with a high absolute value among the estuaries. Au-P was the most important species of phosphorus and accounted for 49.2% of the TP during the investigation. Since eutrophication in the water column can lead to reduction of pH in sediment and release of phosphorus in Au-P combined with authigenic spodiosite and calcium carbonate, high content of Au-P in the sediment maybe act as a time bomb that can trigger a vicious cycle of eutrophication and large-scale harmful algal bloom in the Zhelin Bay.
基金This project was Supported by the National Science Foundation of China
文摘For some hundred surface sediment samples from five cores taken in two cruises near the Huanghe River Estuary, total phosphorus (TP (.inorganic phosphorus (IP (and organic phosphorus (OP)were determined.On the average, 527×10-6, 455×10~6 and 72×10-6 were found for TP,IP and OP for the surface sediments taken in the two cruises. The distribution of OP and IP was controlled by the sample particle size: OP content increased with the decreasing of the sample particle size, while the maximal value of IP was found in the silt fraction due to the existence of apatite in our samples. Vertical distributions reflected well the channel change of the Huanghe River. Results from the multiple regressions between the three forms of phosphorus and the percentages of different particle size agreed well with the analytical data.
基金the Xinjiang Science and Technology Support Project Plan(2022E02026)the Xinjiang Agricultural University Graduate Research and Innovation Programme(XJAUGRI2023049).
文摘Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.
基金The authors thank the financial supports from the National Key R&D Project of China(2017YFD0800505)the National Natural Science Foundation of China(No.41671296).
文摘Soil erosion associated with land cultivation exerts a great impact on ecological environment.Such an impact is specific of land,crop,tillage,management and so on.This study aimed to investigate the effects of crop cultivation on water quality by comparing nutrient distribution in the sediment at Southern China.Two sedimentation sites adjacent to the uncultivated(S1)and cultivated upland(S2)were selected and samples were analyzed.Results showed that soil pH decreased with the increasing depth above 20 cm and then kept relatively stable of the both sediments.Soil organic matter,nitrogen and phosphorus contents decreased with the increasing depth.There was no significant difference between two sediments in organic matter and nitrogen contents,but the total phosphorus and extractable phosphorus contents in S2 were much higher than that in S1.The data indicated that soil eroded from S2 could possess much high potential to deteriorate water quality.Nutrient sedimentation can reflect the history of soil erosion and provide useful information for sustainable soil management and water conservation through improving cultivation and tillage measures.
基金jointly sponsored by the National Natural Science Foundation of China(No.41371450)the Natural Science Foundation of Henan(No.222300420418)the Postgraduate Cultivating Innovation and Quality Improvement Action Plan of Henan University(No.SYLYC2022015)。
文摘In this study,sediment organic phosphorus(OP)and organic carbon(OC)in Lake Taihu,China,as well as their relationships,were analyzed during the outbreak and decline of algal blooms(ABs)over a five-month field study.The results showed synchronous temporal changes in the sediment OP and OC contents with the development of ABs.In addition,there was a significant positive correlation between the sediment OP and OC(p<0.01),suggesting simultaneous deposition and consumption during the ABs outbreak.The sediment OP and OC contents decreased significantly at the early and last stages of the ABs outbreak and increased at the peak of the ABs outbreak and during the ABs decline.These temporal variation patterns suggest that the sediment OC and OP contents did not consistently increase during the ABs outbreak,even though algae are an important source of organic matter in sediments.The depletion or enrichment of OC and OP in sediments may also depend on the scale of the ABs outbreak.The obtained results revealed significant differences in the sediment OC and OP contents between the months(p<0.05).In addition,OP in the sediments was dominated by orthophosphate diester(phospholipids and DNA-P)and orthophosphate monoester during the ABs outbreak and decline,respectively.The active OC contents and proportions in the sediments in the ABs outbreak were significantly lower than those observed in the ABs decline period,demonstrating the significant impacts of the ABs outbreak and decline on the sediment OC and OP in Lake Taihu.
基金Supported by the National Natural Science Foundation of China(No.50879025)the Scientific Start-up Fund from North China Electric Power University, China(No.X60218)the National Basic Research Program of China(No.2004CB3418501).
文摘To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the components. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, before and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar basis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in controlling the environmental behavior of AT in an aquatic environment.
基金Project supported by the State Key Laboratory of Soil and Sustainable Agriculture, China (No. 5022505)the National Natural Science Foundation of China (No. 40771128)
文摘For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equilibrium-partitioning- based numerical SQGs have been developed or are currently available because of the confounding factors mediating the bioavailability of metals. A study was conducted at Dianchi Lake, which is a heavily eutrophicated lake on the Yunnan- Guizhou Plateau, China with the focus on the measurement of partitioning coefficient (Kp) and SQGs derivation and normalization to acid volatile sulfide (AVS), fine material, and organic carbon. Using new normalization methods, SQGs were formulated for seven metals including copper, zinc, lead, cadmium, chromium, mercury, and arsenic in Dianchi Lake. In Dianchi Lake sediments, the fine material contributed 25.4%-36.0% to the SQG values, with the largest contribution to the SQG value of mercury; AVS contributed 2.9%-75.0% to the SQG values, with the largest contribution to the SQG value of cadmium. This indicated that the fine material and the AVS were the most important controlling factors to the bioavailability of mercury and caximium, respectively. The contribution of total organic carbon (TOC) to the SQG values of copper and leaxi was 3.8% and 7.1%, respectively, indicating that at relatively lower concentrations, the contribution of TOC was not significant. In addition to normalization methods, appropriate procedures for the application of EqPA including sample collection, storage, and analysis are also essential to improve the reliability of SQGs. The normalized Dianchi Lake SQGs were higher than most of the empirically based SQGs developed in North America, but lower than Hong Kong interim SQGs except for cadmium and arsenic. The differences could be attributed to the approaches used for derivation of SQGs and the water quality criteria adopted and the differences in the physical and chemical characteristics of the sediments.
基金supported by the National Natural Scientific Foundation of China (No. 40871220,40730528)the Natural Scientific Foundation of Jiangsu Province,China (No. BK2010606)the Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No. NIGLAS2010KXJ01)
文摘Organic phosphorus (nonreactive E NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Talhu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRPnA), fulvic acid-associated NRP (NaOH-NRPFA) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCOa-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.
基金supported by the National Scientific Foundation of China (No. 40871220,40730528)the Natural Scientific Foundation of Jiangsu Province,China (No.BK2010606)the Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences (No. NIGLAS2010KXJ01)
文摘The understanding of organic phosphorus(P) dynamics in sediments requires information on their species at the molecular level,but such information in sediment profiles is scarce.A sediment profile was selected from a large eutrophic lake,Lake Taihu(China),and organic P species in the sediments were detected using solution phosphorus-31 nuclear magnetic resonance spectroscopy(31 P NMR) following extraction of the sediments with a mixture of 0.25 mol/L NaOH and 50 mmol/L EDTA(NaOH-EDTA) solution.The results showed that P in the NaOH-EDTA extracts was mainly composed of orthophosphate,orthophosphate monoesters,phospholipids,DNA,and pyrophosphate.Concentrations of the major organic P compound groups and pyrophosphate showed a decreasing trend with the increase of depth.Their half-life times varied from 3 to 27 years,following the order of orthophosphate monoesters 〉 phospholipids DNA 〉 pyrophosphate.Principal component analysis revealed that the detected organic P species had binding phases similar to those of humic acid-associated organic P(NaOH-NRP HA),a labile organic P pool that tends to transform to recalcitrant organic P pools as the early diagenetic processes proceed.This demonstrated that the depth attenuation of the organic P species could be partly attributed to their increasing immobilization by the sediment solids,while their degradation rates should be significantly lower than what were suggested in previous studies.
基金supported by the National Natural Science Foundation of China(Nos.41003049,41163006)the Inner Mongolia Natural Science Foundation(No.2015MS0404)
文摘The chemistry of sedimentary organic phosphorus(OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with environmental conditions was analyzed on the basis of OP spatial and historical distributions in lake sediments. The redundancy analysis and OP spatial distribution results suggested that both Na OH-OP(OP extracted by Na OH) and Re-OP(residual OP) in surface sediments from the selected 13 lakes reflected the gradient effects of environmental conditions and the autochthonous and/or allochthonous inputs driven by latitude zonality in China. The lake level and salinity of Lake Hulun and the runoff and precipitation of its drainage basin were reconstructed on the basis of the geochemistry index. This work showed that a gradient in weather conditions presented by the latitude zonality in China impacts the OP accumulation through multiple drivers and in many ways.The drivers are mainly precipitation and temperature, governing organic matter(OM)production, degradation rate and transportation in the watershed. Over a long temporal dimension(4000 years), the vertical distributions of Re-OP and Na OH-OP based on a dated sediment profile from HLH were largely regulated by the autochthonous and/or allochthonous inputs, which depended on the environmental and climate conditions and anthropogenic activities in the drainage basin. This work provides useful environmental geochemistry information to understand the inherent linkage of OP fractionation with environmental conditions and lake evolution.
基金This study was supported by the National Key Research Project on Water Environment Pollution Control in China(Nos.2012ZX07301 and 2017ZX07202002).
文摘The effects of sediment aluminum(Al),organic carbon(OC),and dissolved oxygen(DO)on phosphorus(P)transformation,at the water-sediment interface of a eutrophic constructed lake,were investigated via a series of simulative experiments.The above three factors had various influences on dissolved P concentration,water pH,water and surface sediment appearance,and P fractions.Additions of Al had the greatest effect on suppressing P release,and the water p H remained alkaline in the water-sediment system under various OC and DO conditions.No dissolution of the added Al was detected.31P-N M R characterization suggested that OC addition did not promote biological P uptake to polyphosphates under oxic conditions.The simulation result on the added phytate indicated the absence of phytate in the original lake sediment.As compared to the reported natural lakes and wetland,the water-sediment system of the constructed lake responded differently to some simulative conditions.Since Al,OC,and DO can be controlled with engineering methods,the results of this study provide insights for the practical site restorations.
文摘The concentration of total nitrogen (TN), total phosphorus (TP) and organic material (OM) at sixty grid division in Lake Chaohu basin around the lake was studied, in order to investigate their spatial distribution characteristics. The results showed that the average concentrations of TN, TP and OM were 1027 mg/kg, 483 mg/kg, 1.95%, and their concentrations ranged from 253 mg/kg to 2273 mg/kg, 223 mg/kg to 1173 mg/kg and 0.291% to 5.48%, respectively. The high concentration areas were located at the basins of Tuogao river and Zhao river while the low concentration areas were located at basins of Pai river, Nanfei river and Dianpu river. The concentrations of TN and OM were higher in East part than in West part. The spatial distribution of TN, TP and OM concentrations of the surface soil showed inconsistent with those of the water quality of the inflow rivers and the lake and the TN and TP of lake sediment studied.
基金supported by the National Natural Sci- ence Foundation of China (No. 51079068)the Natural Science Foundation of Tianjin (No. 09ZCGYSF00400, 08FDZDSF03402)+1 种基金the National Key-Projects of Water Pollution Control and Prevention (No. 2008ZX07314-005- 001, 2009ZX07209-001)funded by The Royal Society
文摘We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ( 60%). The fraction of clay was 3%. Total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 729 to 1922 mg/kg and from 692 to 1388 mg/kg, respectively. Nutrient concentrations within the sediments usually decreased with increasing depth. The TN and TP concentrations within the fine sand were higher than for that within silt. Sediment phosphorus fractions were between 2.99% and 3.37% Ex-P (exchangeable phosphorus), 7.89% and 13.71% Fe/Al-P (Fe, Al oxides bound phosphorus), 61.32% and 70.14% Ca-P (calcium-bound phosphorus), and 17.03% and 22.04% Org-P (organic phosphorus). Nitrogen and phosphorus release from sediment could lead to the presence of 21.02 mg N/L and 3.10 mg P/L within the water column. A river restoration project should address the sediment nutrient stock.