期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors 被引量:1
1
作者 Shi-Li Yan Zhi-Jian Xie +2 位作者 Jian-Hao Chen Takashi Taniguchi Kenji Watanabe 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期87-91,共5页
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o... The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging. 展开更多
关键词 Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black phosphorus Field effect Transistors FET BP
下载PDF
A Comparative Study of Boron and Phosphorus Doping Effects in SiC: H Films Prepared by ECR-CVD 被引量:1
2
作者 S.F. Yoon (School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue,Singapore 639798, Rep. of Singapore) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第1期65-71,共7页
Hydrogenated silicon carbide films (SiC:H) were deposited using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) technique from a mixture of methane, silane and hydrogen, and using diborane and ph... Hydrogenated silicon carbide films (SiC:H) were deposited using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) technique from a mixture of methane, silane and hydrogen, and using diborane and phosphine as doping gases. The effects of changes in the microwave power on the deposition rate and optical bandgap were investigated, and variations in the photoand dark-conductivities and activation energy were studied in conjunction with film analysis using the Raman scattering technique. In the case of boron-doped samples, the conductivity increased rapidly to a maximum, followed by rapid reduction at high microwave power. The ratio of the photo- to dark-conductivity (σph/σd) peaked at microwave power of ~600 W. Under conditions of high microwave power, Raman scattering analysis showed evidence of the formation and increase in the silicon microcrystalline and diamond-like phases in the films, the former of which could account for the rapid increase and the latter the subsequent decrease in the conductivity.In the case of phosphorusdoped SiC:H samples, it was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the films which occurred in correspondence to a rapid increase in the conductivity and reduction in the activation energy The conductivity increase stabilised in samples deposited at microwave power exceeding 500 W probably as a result of dopant saturation. Results from Raman scattering measurements also showed that phosphorus doping had the effect of enhancing the formation of the silicon microcrystals in the film whereas the presence of boron had the effect of preserving the amorphous structure. 展开更多
关键词 ECR A Comparative Study of Boron and phosphorus Doping effects in SiC H Films Prepared by ECR-CVD
下载PDF
Influence Factors of Phosphorus Removal by Chemical Method in Sewage Treatment System 被引量:1
3
作者 Dan Song Subo Yang 《Meteorological and Environmental Research》 CAS 2013年第7期50-52,共3页
[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dos... [Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus. 展开更多
关键词 Lime method Removal effect of phosphorus Influence factor Sewage treatment system China
下载PDF
Effect of phosphorus ion implantation on back gate effect of partially depleted SOI NMOS under total dose radiation 被引量:2
4
作者 李蕾蕾 周昕杰 +1 位作者 于宗光 封晴 《Journal of Semiconductors》 EI CAS CSCD 2015年第1期82-85,共4页
The mechanism of improving the TID radiation hardened ability of partially depleted silicon-oninsulator(SOI) devices by using the back-gate phosphorus ion implantation technology is studied. The electron traps intro... The mechanism of improving the TID radiation hardened ability of partially depleted silicon-oninsulator(SOI) devices by using the back-gate phosphorus ion implantation technology is studied. The electron traps introduced in Si O2 near back Si O2/Si interface by phosphorus ions implantation can offset positive trapped charges near the back-gate interface. The implanted high concentration phosphorus ions can greatly reduce the back-gate effect of a partially depleted SOI NMOS device, and anti-total-dose radiation ability can reach the level of 1 Mrad(Si) for experimental devices. 展开更多
关键词 back gate phosphorus ions implantation total-dose radiation SOI MOS back-gate effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部